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The shape and center of mass of a part are crucial parameters to algorithms for
planning automated manufacturing tasks. As industrial parts are generally manufactured
to tolerances, the shape is subject to variations, which, in turn, also cause variations in
the location of the center of mass. Planning algorithms should take into account both
types of variation to prevent failure when the resulting plans are applied to manufactured
incarnations of a model part.
We study the relation between variation in part shape and variation in the location of the
center of mass for a part with uniform mass distribution. We consider a general model
for shape variation that only assumes that every valid instance contains a shape P I while
it is contained in another shape P E . We characterize the worst-case displacement of the
center of mass in a given direction in terms of P I and P E . The characterization allows us to
determine an adequate polytopic approximation of the locus of the center of mass. We also
show that the worst-case displacement is small if P I is convex and fat and the distance
between the boundary of P E and P I is bounded.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many automated part manufacturing tasks involve manipulators that perform physical actions—such as pushing, squeez-
ing [1], or pulling [2]—on the parts. Over the past two decades, researchers in robotics in general and algorithmic automation
in particular have thoroughly studied the effect of physical actions as well as their potential role in accomplishing high-level
tasks like orienting or sorting. It is evident that shape and—in many cases (see e.g. [1,3–7])—location of the center of mass
are important parameters in determining the effect of a physical action on a part.

Industrial parts are always manufactured to tolerances as no production process is capable of delivering parts that are
perfectly identical. Tolerance models [8,9] are therefore used to specify the admitted variations with respect to the CAD
model. A consequence of these variations [10,11] is that actions that are computed on the basis of a CAD model of a part
may easily lead to different behavior when executed on a manufactured incarnation of that part, and thus to failure to
accomplish the higher-level task. It is important to note that the shape variations not only directly affect the behavior of
the part but indirectly as well because they also cause a displacement of the center of mass of the part.

To extend the planning algorithms to imperfect manufactured incarnations, it is important to understand the effects of
variations and take them into account during planning. Larger variations in part shape and center-of-mass location inevitably

* Corresponding author.
E-mail addresses: F.Panahi@uu.nl (F. Panahi), A.F.vanderStappen@uu.nl (A.F. van der Stappen).

1 F. Panahi is supported by the Netherlands Organization for Scientific Research (NWO), grant number 612.001.016 (AMPLIFI).

http://dx.doi.org/10.1016/j.comgeo.2014.04.008
0925-7721/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.comgeo.2014.04.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
mailto:F.Panahi@uu.nl
mailto:A.F.vanderStappen@uu.nl
http://dx.doi.org/10.1016/j.comgeo.2014.04.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2014.04.008&domain=pdf


848 F. Panahi, A.F. van der Stappen / Computational Geometry 47 (2014) 847–855

Fig. 1. A family of shapes specified by a subshape P I and a supershape P E of a model part P M , along with a valid instance P ∈ S(P I , P E ).

result in a larger range of possible part behaviors, which reduces the likeliness that a manufacturing task can be accom-
plished. Therefore we will study how variations in part shape influence the location of the center of mass. (Note that
variations in shape and center of mass are not the only sources of uncertainty in robotics. Additional uncertainty can result
from the inaccuracy of the actuators and manipulators [12] and sensors [13].)

Several geometric approaches have been proposed to overcome the problems occurring in the presence of uncertainty
and to smooth the effects of errors. Among the existing approaches are the model of ε-geometry [14], tolerance and interval
geometry [15,16] and region-based models [17]. Generally, in all these models an uncertain point is represented by a region
in which it may vary. The model of ε-geometry assumes that a point can vary within a disk of radius ε . Tolerance and
interval-geometry take into account coordinate errors which results in an axis-aligned rectangular region in which a point
can vary. In general, region-based models represent a point by any convex region. After modeling uncertainty as a point
surrounded by a region, it is possible to study worst (and best) cases for a problem under the specific uncertainty model.

As observed before, variation of the shape causes variation of the center of mass of a part. The locus of the centroid of
a set of points with approximate weights has been studied by Bern et al. [18]. Akella et al. [19] estimated the locus for a
polygon under the ε-geometry model [19]. The problem of finding the locus of the center of mass of a part with shape
variation and uniformly distributed mass has been mentioned as an open problem [11,19]. Akella et al. [19] studied rotating
a convex polygon whose vertices and center of mass lie inside predefined circles centered at their nominal locations. The
problem of orienting a part by fences has been studied by Chen et al. [11]. They define disk and square regions for the
vertices of a part and proposed a method for computing the maximum allowable uncertainty radius for each vertex. They
also discussed in a more general way the key role of the center of mass and the successfulness of part feeding (or orienting)
algorithms in a setting of shape variation. Chen et al. [20] presented algorithms for squeezing and pushing problems. Kehoe
et al. [21] explored cloud computing in a context of grasping and push-grasping under shape variation.

All the previous models for shape variation only allow the vertices to vary. In this paper we use a more general model for
shape variation. For given shapes P I and P E such that P I ⊆ P E we consider the family of shapes P satisfying P I ⊆ P ⊆ P E .
In the practical setting of toleranced parts the shapes P I and P E will be fairly similar. We will show in Section 3 that the
valid instance that yields the largest displacement of the center of mass in a given direction is a shape that combines a
part of P I with a part of P E . The corresponding displacement is computable in O (n log n) time where n is the complexity
of P I and P E ; it can be used to obtain a k-facet outer approximation of the set of all possible loci of the center of mass in
O (kn log n) steps.

In Section 4, we will study the size of the set of possible center-of-mass loci. Fatness of the objects under consideration
has led to lower combinatorial complexities and more efficient algorithms for various problems, including union complex-
ities [22], motion planning [23], hidden surface removal [24], and range searching [25]. Here we show that fatness and
convexity of P I together with the assumption that no point in P E has a distance larger than ε to some point in P I leads to
a bound on the distance between the centers of mass of any two valid instances of a part which is proportional to ε and
the fatness of P I .

2. Preliminaries

In this section, we first present a general model for shape variations, then review the notion of a center of mass, and
finally introduce a few notions that allow us to characterize the shapes that maximize the displacement of the center of
mass. Let P M ⊂ R

d be the model part, with d = 2 or d = 3. The part P M has a uniform mass distribution.
No production process ever delivers parts that are perfectly identical to the model part P M and therefore industrial parts

are manufactured to tolerances. We use a very general model for permitted shape variations that only requires that any
manufactured instance of P M contains a given subshape P I of P M while it is contained in a supershape P E of P M . As a
result, the set of acceptable instances of P M is a family of shapes S(P I , P E ) = {P ⊂ R

d | P I ⊆ P ⊆ P E } for given P I and
P E satisfying P I ⊆ P M ⊆ P E . In other words, the boundary ∂ P of an instance P ∈ S(P I , P E) should be entirely contained
in Q = P E − int(P I ) where int(P ) denotes the interior of the set P . The region Q is referred to as the tolerance zone.
The objects P I and P E are assumed to be closed semi-algebraic sets with a total of n boundary features. (Fig. 1 shows an
example of a model part P M , shapes P I and P E , and a valid instance P ∈ S(P I , P E).) We denote by COM(P I , P E ) the set of
all centers of mass of instances P ∈ S(P I , P E ).
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