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a b s t r a c t

Models and algorithms for nonparametric estimation of finite multivariate mixtures have
been recently proposed, where it is usually assumed that coordinates are independent
conditional on the subpopulation from which each observation is drawn. Hence in these
models the dependence structure comes only from the mixture. This assumption is
relaxed, allowing for independent multivariate blocks of coordinates, conditional on the
subpopulation from which each observation is drawn. Otherwise the density functions of
these blocks are completely multivariate and nonparametric. An EM-like algorithm for this
model is proposed, and some strategies for selecting the bandwidth matrix involved in
the nonparametric estimation step of it are derived. The performance of this algorithm
is evaluated through several numerical simulations. A real dataset of reasonably large
dimension is experimented on this newmodel and algorithm to illustrate its potential from
the model based, unsupervised clustering perspective.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Populations of individuals may often be divided into subgroups. Examining a sample of measurements to discern and
describe subgroups of individuals, even when there is no observable variable that readily indicates into which subgroup
an individual properly belongs, is sometimes referred to as ‘‘unsupervised clustering’’ in the literature, and in fact mixture
models may be generally thought of as comprising the subset of clustering methods known as model-based clustering.

Finite mixture models may also be used in situations beyond those for which clustering of individuals is of interest.
For one thing, finite mixture models give descriptions of entire subgroups (called components), rather than assignments of
individuals to those subgroups. Indeed, even the subgroups may not necessarily be of interest; sometimes finite mixture
models merely provide a means for adequately describing a particular distribution, such as the distribution of residuals in
a linear regression model where outliers are present. Much of the theory of these models involves the assumption that the
subgroups are distributed according to a particular parametric shape and quite often this parametric family is univariate or
multivariate normal.

The most general model for nonparametric multivariate mixtures is as follows: suppose the vectors X1, . . . ,Xn are a
simple random sample from a finite mixture ofm > 1 arbitrary distributions. The density of each Xi may be written

gθ(xi) =

m
j=1

λjfj(xi), (1)
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where xi ∈ Rr , and θ = (λ, f ) = (λ1, . . . , λm, f1, . . . , fm) denotes the parameters of the statistical model. In this model λj
denotes the proportion (weight) of component j in the population; the λj’s are thus positive and

m
j=1 λj = 1. The fj’s are

the component densities, drawn from some family of multivariate density functions F absolutely continuous with respect
to Lebesgue measure. Note that the univariate (r = 1) case will only be briefly considered, since this paper focuses on
multivariate extensions.

Model (1) is not identifiable if no restrictions are placed on F , where ‘‘identifiable’’ means that gθ has a unique
representation of the form (1) and also that we do not consider that ‘‘label-switching’’ – i.e., reordering the m pairs
(λ1, f1), . . . , (λm, fm) – produces a distinct representation. The most common restriction in the mixture literature is to
assume that the family F is parametric, i.e. that any f ∈ F is completely specified by a finite-dimensional parameter.
The most used and studied parametric mixture model is the Gaussian mixture, where fj is the density of a (univariate
or multidimensional) Gaussian distribution with mean µj and variance (matrix) Σj. Section 1.2 presents various ways of
relaxing this parametric assumption while preserving an identifiability property. In the recent literature, finite mixtures
of non-normal distributions have been considered as alternatives to the traditional Gaussian mixture, see, e.g., Lee and
McLachlan (2013) which provides a comprehensive overview. These non-normal mixtures are mostly proposed to model
heavy-tailed or skewed normal distributions, but are not appropriate for, e.g., non-elliptical clusters (see the model we
consider in Section 4.4 for an example). Another point is that each non-normal but parametric mixture requires a specific
multivariate EM algorithm, whereas our approach follows a different track: it is fully general since it allows for modeling of
any cluster shape, and only requires for clustering the algorithm we propose.

1.1. The EM algorithm

Mixture models are deeply connected to the EM algorithm. This algorithm, as defined in the seminal article (Dempster
et al., 1977), is more properly understood to be a class of algorithms, a number of which predate even (Dempster et al., 1977)
in the literature. These algorithms are designed formaximum likelihood estimation inmissing data problems, ofwhich finite
mixtures are canonical examples because the unobserved labels of the individuals (as in unsupervised clustering) give an
easy interpretation of missing data. A recent account of the EM algorithm principle, properties and generalizations can be
found in McLachlan and Krishnan (2008), and mixture models are deeply detailed in McLachlan and Peel (2000).

In a missing data setup, the n-fold product of the probability density function (pdf) gθ of the observations corresponds
to the incomplete data pdf, associated with the log-likelihood ℓx(θ) =

n
i=1 log gθ(xi). In mixture models and many other

missing data situations, maximizing ℓx(θ) leads to a difficult problem. Intuitively, EM algorithms replace this unfeasible
maximization by the maximization of a pseudo-likelihood that resembles the likelihood for some complete data y that is
defined from the model, so that this pseudo-likelihood is easy to maximize. Assuming y comes from a complete data pdf g c

θ ,
the EM algorithm iteratively maximizes the operator

Q (θ|θ(t)) := E[log g c
θ (y)|x, θ

(t)
],

the expectation being taken relatively to the conditional distribution of (y|x), for the value θ(t) of the parameter at iteration
t . Given an arbitrary starting value θ(0), the EM algorithm generates a sequence (θ(t))t≥1 by iterating the following steps:

1. E-step: compute Q (θ|θ(t))

2. M-step: set θ(t+1)
= argmaxθ∈ΘQ (θ|θ(t)).

In finite mixture models, the complete data associated with the actually observed sample x is y = (x, Z), where to each
individual (multivariate) observation xi is associated an indicator variable Zi denoting its component of origin. It is common
to define Zi = (Zi1, . . . , Zim) with the indicator variables

Zij = I{observation i comes from component j},
m
j=1

Zij = 1.

From (1), this means that Pθ(Zij = 1) = λj, and (Xi|Zij = 1) ∼ fj, j = 1, . . . ,m. In this case, the expectation is w.r.t. the
conditional distribution of the Zij’s,

Q (θ|θ(t)) := E
 n
i=1

m
j=1

Zij log λjfj(xi)|x, θ(t).
Conveniently, the M-step for finite mixture models always looks partly the same: No matter what form the fj’s take, the
updates to the mixing proportions are given by

λ
(t+1)
j =

1
n

n
i=1

p(t)
ij , for j = 1, . . . ,m,

where p(t)
ij := Pθ(t)(Zij = 1|xi) is the posterior probability that the individual i comes from component j. The updates for the

fj’s depend on the particular form of the component densities. In parametric mixtures (i.e. when the family F is completely
specified by a finite-dimensional parameter), the updates of these parameters are often straightforward, and can be looked
like weighted MLE estimates. This is the case for, e.g., Gaussian mixtures.
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