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a b s t r a c t

A new approach named as the iterated imputation estimation is proposed for parameter
estimation in generalized linear models with missing values in both response and
covariates anddata aremissing at random. Theproposed approach ismuch faster and easier
to implement than the method of maximum likelihood or weighted estimating equation.
It can be applied by directly using any existing software package for generalized linear
models and treating the imputed values as observed in each iteration, which brings great
convenience in programming. Theoretical results for the algorithm convergence of the
iterated imputation estimation and the asymptotic distribution of the proposed estimator
are obtained. Simulation studies and an illustrative example show that the iterated
imputation estimation works quite well considering the trade-off between computational
burden and estimation efficiency compared with the maximum likelihood estimation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Missing data is a common phenomenon in many applications in areas such as clinical trials, economics, sample surveys,
and social sciences. Conventional statistical methods cannot be directly applied to incomplete data in most situations. We
consider regression problems with both response and covariate variables having missing values. Most existing methods
dealt with either missing response or missing covariate data (see, e.g., Little, 1992; Robins et al., 1994; Lipsitz et al., 1999;
Fitzmaurice et al., 2001; Tang et al., 2003; Ibrahim et al., 2005). For linear regression models with missing response and
covariate data, Chen et al. (2008) discussed theoretical properties for inference using maximum likelihood estimation via
EM algorithm when the data is missing at random; Shao (2013) proposed some asymptotically unbiased and consistent
estimators via direct estimation or imputation. For linear mixed models and generalized linear mixed models, Stubbendick
and Ibrahim (2003, 2006) assumed full parametricmodelswhen themissing datamechanism is nonignorable and estimated
the parameters by themaximum likelihoodmethod. For longitudinal datawhenboth responses and covariates aremissing at
random, Shardell andMiller (2008) and Chen et al. (2010) proposed several estimationmethods based on inverse probability
weighted estimating equations, in which a parametric model for the missing probability needs to be correctly specified.

In this paper, we consider a generalized linear model (GLM) involving n sampled subjects with independent and
identically distributed data (yi, xi, zi), i = 1, . . . , n, where yi is the outcome or response from subject i, xi and zi are
p- and q-dimensional random vectors of covariates, yi and some components of xi may be missing, and zi has no missing
data. We assume missing at random (MAR), i.e., the probabilities of missing yi and components of xi only depend on zi
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and xobsi , the observed part of xi (Little and Rubin, 2002), but no parametric forms of the probabilities are assumed and the
missing datamechanisms of yi and xi can be correlated each other. There aremanymethods for handlingmissing data under
MAR (e.g., Little and Rubin, 2002; Kim and Shao, 2013). The simplest method is the complete case analysis that ignores the
sampled subjects with incomplete data and applies the conventional statistical method. This approach is valid under the
GLM but is quite inefficient if the size of incomplete data is large, especially when xi is multivariate.

Under MAR, the maximum likelihood estimation (MLE) can be adopted in a similar way to Lipsitz et al. (1999) and
Chen et al. (2008). The MLE specifies conditional distributions of yi given xi and zi, p(yi|xi, zi, β), and xi given zi, p(xi|zi, α),
where β is the unknown regression parameter vector of interest and α is an unknown vector of nuisance parameters. The
parameters can be consistently estimated by maximizing the observed likelihood with a Monte Carlo EM algorithm (Lipsitz
et al., 1999; Ibrahim et al., 2005). In iteration t+1 of the algorithm, aMonte Carlo sample of size L needs to be generated from
the distribution p(xmis

i |yi, xobsi , zi, β̂(t), α̂(t)) or p(yi, xmis
i |xobsi , zi, β̂(t), α̂(t)) for every subject i with missing covariate values

(response can be observed or missed), where xmis
i is the missing components of xi and (β̂(t), α̂(t)) is the parameter vector

estimated in iteration t . The distribution p(xmis
i |yi, xobsi , zi, β̂(t), α̂(t)) does not have an explicit form (due to the nonlinearity

in GLMs) and sampling techniques such as the Gibbs sampler and the adaptive rejection algorithm of Gilks andWild (1992)
need to be used, which could be quite time-consuming especially when p > 1.

Alternatively, one may use the weighted estimating equation (WEE) that was mainly developed by Robins et al. (1994),
Zhao et al. (1996), and Lipsitz et al. (1999). TheWEE with an augmented term has a double robustness property in the sense
that the estimation is consistent when either p(xi|zi, α) or πi = p(δy

i = 1, δx
i = 1|xobsi , zi) is correctly specified, where

δ
y
i = 1 if yi is observed, δy

i = 0 if yi is missing, δx
i = 1 if xi is fully observed and δx

i = 0 if some components of xi are
missing. However, the efficiency of WEE relies on the correct specifications of both p(xi|zi, α) and πi; and modeling πi is not
easy especially when p > 1. Furthermore, the WEE has even heavier computational burden than the MLE since a EM-Type
algorithm is also needed and theMonte Carlo sampling procedure needs to be done for all the subjects (not just the subjects
with δx

i = 0 as in the MLE).
Kim (2011) proposed a parametric fraction imputation (PFI) method using the idea of importance sampling and

calibration weighting to reduce the computational burden of the MLE andWEE. However, the PFI method needs to carefully
arrange the imputed data and apply a weighted GLM, where the weights have to be updated in each iteration. Moreover, the
PFI needs a large number of multiple imputations to achieve the consistency and efficiency of the resulting estimators.
Although a calibrated PFI was proposed for a moderate number of multiple imputations, it brings more complexity in
computation.

In this paper, we propose an iterated imputation estimation (IIE) approach. It has much less computational burden than
the MLE and WEE and hence is more applicable for large samples with multivariate xi having missing values. The IIE can
directly use any existing software package for GLMs by treating the imputed values as observed in each iteration, which
brings great convenience in programming. The methodology is described in Section 2. Some theoretical results concerning
the convergence of the iterative algorithm and asymptotic distribution of the proposed estimator are presented in Section 3.
Some simulations in Section 4 show that the IIE is much faster than the MLE and WEE but its efficiency loss is minor. The
capability of the IIE to handle multivariate xi and a relatively large sample size is also checked. An illustrative example is
given in Section 5. Some concluding remarks are given in Section 6. All the proofs are in the Appendix.

2. Iterated imputation estimation

2.1. Notation and model

Under a generalized linear model, the conditional distribution of yi given xi and zi has a density p(yi|xi, zi, β, τ ) =

exp{τ−1(yiηi − b(ηi)) + c(yi, τ )}, where b and c are known functions, τ > 0 is an unknown dispersion parameter,
ηi = η(βT

x xi + βT
z zi), βx and βz are p- and q-dimensional subvectors of β , aT denotes the transpose of a, and η is a known

one-to-one, continuously differentiable function. This includes many useful regression models as special cases, such as
normal linear regression, logistic regression, probit regression, Poisson regression, gamma regression, etc. The covariate
zi may contain a constant component so that the corresponding component of βz is the intercept effect. Since our main
interest is to estimate β with missing values, without loss of generality, we assume throughout that τ = 1 and write
p(yi|xi, zi, β) = p(yi|xi, zi, β, τ = 1). If there is no missing data, β is estimated by maximizing the full data likelihood
function, or equivalently, by resolving the full data score equation

S(β) =

n
i=1

∂ log{p(yi|xi, zi, β)}

∂β
=

n
i=1

g(xi, zi, β)

yi − h(βT

x xi + βT
z zi)


= 0 (1)

with h(βT
x xi + βT

z zi) = b′(ηi) = E(yi|xi, zi), g(xi, zi, β) = {∂h(βT
x xi + βT

z zi)/∂β}/vi, and vi = b′′(ηi) = Var(yi|xi, zi).
When yi and some components of xi are missing for some subjects, the equation in (1) cannot be solved. The complete

case analysis replaces (1) with

Scc(β) =

n
i=1

δig(xi, zi, β)

yi − h(βT

x xi + βT
z zi)


= 0, (2)



Download English Version:

https://daneshyari.com/en/article/415259

Download Persian Version:

https://daneshyari.com/article/415259

Daneshyari.com

https://daneshyari.com/en/article/415259
https://daneshyari.com/article/415259
https://daneshyari.com

