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a b s t r a c t

Linear mixed models (LMMs) are used as an important tool in the data analysis of
repeated measures and longitudinal studies. The most common form of LMMs utilizes
a normal distribution to model the random effects. Such assumptions can often lead to
misspecification errors when the random effects are not normal. One approach to remedy
the misspecification errors is to utilize a point-mass distribution to model the random
effects; this is known as the nonparametric maximum likelihood-fitted (NPML) model.
The NPML model is flexible but requires a large number of parameters to characterize
the random-effects distribution. It is often natural to assume that the random-effects
distribution be at least marginally symmetric. The marginally symmetric NPML (MSNPML)
random-effects model is introduced, which assumes a marginally symmetric point-mass
distribution for the random effects. Under the symmetry assumption, the MSNPML model
utilizes half the number of parameters to characterize the same number of point masses
as the NPML model; thus the model confers an advantage in economy and parsimony.
An EM-type algorithm is presented for the maximum likelihood (ML) estimation of LMMs
with MSNPML random effects; the algorithm is shown to monotonically increase the log-
likelihood and is proven to be convergent to a stationary point of the log-likelihood function
in the case of convergence. Furthermore, it is shown that the ML estimator is consistent
and asymptotically normal under certain conditions, and the estimation of quantities
such as the random-effects covariance matrix and individual a posteriori expectations
is demonstrated. A simulation study is used to illustrate the gains in efficiency of the
MSNPML model over the NPML model under the assumption of symmetry. A pair of real
data applications are then used to demonstrate the manner in which the MSNPML model
can be used to draw useful statistical inference.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Linear mixed models (LMMs) are used as a fundamental tool for the statistical analysis of longitudinal data and data
with repeated measurements; see McCulloch and Searle (2001, Ch. 6), Pinheiro and Bates (2000, Ch. 1), and Verbeke and
Molenberghs (2000) for introductions on the topic. In the style of Laird and Ware (1982), an LMM can be characterized as
follows.

Let Yj =

Yj1, . . . , Yjnj

T be a vector of nj responses belonging to individual j, for j = 1, . . . , n, where n is the total number
of individuals. Further, let each measurement Yjk, for k = 1, . . . , nj, be dependent upon covariate vectors xjk ∈ Rp and
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zjk ∈ Rq, and for each j, let Bj ∈ Rq be a vector of individual random effects arising from the a priori probability distribution
FB (b) with density fB (b). We say that the data arises from an LMM if for each j and k,

Yjk|

Bj = bj


= xTjkβ + zTjkbj + Ejk, (1)

where β ∈ Rp is a vector of fixed effects and Ejk is a random error with probability density fE (e). Here, a superscript T
indicates matrix transposition.

The main difficulty that arises in the use of LMMs is the evaluation andmanipulation of the marginal density of yj, which
has the general form

fYj

yj


=


Rq


nk
k=1

fE

yjk − xTjkβ − zTjkbj


fB

bj

dbj, (2)

and can often be quite complex due to the integration form.
The traditional approach in dealing with the complexities of (2) is to set the error density as

fE (e) = φ

e; 0, σ 2 , (3)

where

φ

e; µ, σ 2

=
1

√
2πσ 2

exp

−

(e − µ)2

2σ 2


is the normal density function with mean µ and variance σ 2, and to let fB (b) be a multivariate normal density. This
approach results in fYj


yj

having the form of a multivariate normal density function, and allows for simple inference by

maximum likelihood (ML) estimation via an expectation–maximization (EM) algorithm; see Laird and Ware (1982, Sec. 4)
and McLachlan and Krishnan (2008, Sec. 5.9) for details.

It is well known that the estimation of the fixed effects β is robust to the specification of the random-effects distribution.
However, this robustness does not extend to the characterization of the random effects in the case of misspecification.
The robustness as well as the effects of misspecification are explored in Agresti et al. (2004), Butler and Louis (1992), and
McCulloch and Neuhaus (2011). For instance, in all three articles, the authors note that the estimates for the fixed effects
tended not to be influenced greatly by the choice of the random-effects model. However, Agresti et al. (2004) note that
the usual normal model can be highly inefficient when the true random-effects model is polarizing, such as in the case of
binary or mixture random-effects distributions. It is further remarked inMcCulloch and Neuhaus (2011) that the estimation
of random intercept coefficients can be biased by making incorrect assumptions regarding the shape of the underlying
random-effects distribution.

Multiple strategies have been considered for remedying random-effects misspecification. For example, Pinheiro et al.
(2001) and Song et al. (2007) considered t distributed random-effects and noisemodels, whereas Arellano-Valle et al. (2005),
Lachos et al. (2010), and Ho and Lin (2010) considered the use of skew normal and t distributed random and noise models.
Although a rich class, the use of such distributions often do not allow for simplification of the marginal density (2) and do
not allow for enough flexibility to model random-effects distributions with multiple modes or deviations from bell-shaped
curves.

Based on the nonparametric maximum likelihood (NPML) principle of Laird (1978), Aitkin (1999) and Butler and Louis
(1992) suggested using the point-mass density

fB (b) =

g
i=1

πiδ (b − λi) (4)

for the random effects, where δ (x) is the Dirac delta function, g ≥ 1 is the number of point masses, and λi ∈ Rq and
πk > 0 are the point-mass locations and weights, for i = 1, .., g , respectively. To ensure that the total probability of the
point masses adds up to unity and that the mean of fB (b) is zero, we also require the restrictions that

g
i=1 πi = 1 (which

implies that πg = 1 −
g−1

i=1 πi) and
g

i=1 πiλi = 0, where 0 is a zero vector of appropriate size. We shall refer to densities
of the form (4) as NPML-fitted (NPML) densities.

In Agresti et al. (2004) it was shown that NPML densities offered improvements in efficiency for estimating the
characteristics of the random-effects density such as the covariance and individual a posteriori estimates of the random
effects (i.e. E


Bj|Yj = yj


) when compared to the use of parametric random-effects densities in situations, where the

true random-effect densities deviated from the assumed parametric form. However, this improvement comes at a cost of
modeling complexity, since for any given g and q, the number of parameters required for the specification and estimation
of the NPML density is (g − 1) (q + 1). This number can grow quickly if g or q are large.

We note that although unimodality or bell shape cannot be assumed in general, it may still be acceptable to
assume symmetry in the random-effects distribution. Thus, we introduce the marginally symmetric NPML (MSMPML)
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