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a b s t r a c t

An efficient numerical method for nearly simultaneous computation of all conditional
moments needed for quasi maximum likelihood estimation of parameters in discretely
observed stochastic differential equations is presented. The method is not restricted to
any particular dynamics of the stochastic differential equation and is virtually insensitive
to the sampling interval. The key contribution is that computational complexity is
sublinear in terms of expensive operations in the number of observations as all moments
can be computed offline in a single operation. Simulations show that the bias of the
method is small compared to the random error in the estimates, and to the bias of
comparable methods. Furthermore the computational cost is comparable (actually faster
for moderate and large data sets) to the simple, but in some applications badly biased, the
Euler–Maruyama approximation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Most applications such as simulation or estimation involving Itō stochastic differential equations (SDEs) are in oneway or
another linked to the transition probabilities of the process. For example, it would be straightforward to estimate parameters
using themaximum likelihoodmethod if the transition probability density was known, but this is rarely the case in practice.

However, it is often possible to approximate the transition probability density. The probability density was obtained
by brute force numerical computation of the solution to the Fokker–Planck equation (a partial differential equation) in Lo
(1988); Lindström (2007) while Monte Carlo based approaches were proposed in Pedersen (1995b), Durham and Gallant
(2002), Beskos et al. (2009), Pastorello and Rossi (2010) and Lindström (2012b) and references therein. Those methods are
computationally expensive, making them unsuitable for large data sets. A Gauss–Hermite series expansion of the transition
probability densitywas proposed byAït-Sahalia (2002), although that approach is limited tomodelswith a specific structure.

The recent advances in collecting and storing large amounts of data are shifting the focus away from computationally
slow but statistically efficient maximum likelihood methods towards computationally faster, yet not quite as statistically
efficient quasi-maximum likelihood methods as the abundance of data often more than makes up for the loss of efficiency.

A simple approach based on the quasi maximum likelihood technique was introduced in Florens-Zmirou (1989) where
the conditional mean and variance were obtained from an Euler–Maruyama discretization of the model, see Kloeden and
Platen (1992). This is very efficient from a computational point of view and it was shown in Florens-Zmirou (1989) that
their method is equivalent to the maximum likelihood estimator as the sampling interval goes to zero, as the bias vanishes.

∗ Corresponding author.
E-mail address: erikl@maths.lth.se (E. Lindström).

http://dx.doi.org/10.1016/j.csda.2016.05.014
0167-9473/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.csda.2016.05.014
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2016.05.014&domain=pdf
mailto:erikl@maths.lth.se
http://dx.doi.org/10.1016/j.csda.2016.05.014


L.J. Höök, E. Lindström / Computational Statistics and Data Analysis 103 (2016) 426–437 427

A higher order version of this approach is proposed in Kessler (1997). Quasi maximum likelihood methods for diffusion
processes are consistent provided that the mean and variance are correctly specified, see Bibby and Sørensen (1995) and
Sørensen (2012). The bias in the Florens-Zmirou (1989) and Kessler (1997) methods therefore explicitly depends on the
quality of the approximation of conditional moments, see Höök and Lindström (2014).

The purpose of this paper is to develop a computationally fast quasi maximum likelihood estimator for discretely
observeddiffusionprocesses that is suitable formoderate to large data sets.We show that the computational cost is sublinear
rather than superlinear due to how the conditional moments are computed. Our simulations show that the computational
complexity is comparable to that of the Euler–Maruyama scheme, and hence magnitudes faster than any approximate
maximum likelihoodmethod. Thiswill be achievedwithout the bias problems associatedwith the Euler–Maruyamamethod,
a property that is virtually independent of the sampling interval.

The outline of the paper is as follows. In Section 2we formulate the statistical problem and discuss some alternative tech-
niques for calculating conditional moments. This is followed by Section 3 where we present a numerical implementation
that results in sublinear complexity. The resulting parameter estimation algorithm is demonstrated in Section 4 on two qual-
itatively different diffusion processes as well a randomly sampled data followed by conclusions being drawn in Section 5.

2. Diffusion processes and conditional moments

Let (Ω, F , P, {Ft}t≥0) be a filtered probability space and let Xt(θ) be a stochastic process defined on that space that
solves the following one dimensional stochastic differential equation (SDE)

dXt = aθ (Xt)dt + bθ (Xt)dWt , Xt0 = x. (1)

We assume throughout the paper that the drift and diffusion terms are regular enough (e.g. bounded growth and local
Lipschitz, see Karatzas and Shreve (2012) for alternative conditions) to ensure existence and uniqueness of the solution. The
optimal method for estimating the parameters, θ , is the maximum likelihood estimator. Let xk = x(tk), k = 1, . . . , K be
observations generated from Eq. (1). The maximum likelihood estimator is defined as

θ̂MLE = argmax
θ∈Θ

ℓ(θ), (2)

where the log-likelihood function is given by

ℓ(θ) = log pθ (x0) +

K
k=1

log pθ (xk|xk−1). (3)

The transition probability densities, pθ (xk|xk−1) are obtained as the solution to the Fokker–Planck equation (also known as
the Kolmogorov forward equation). That partial differential equation (PDE) is given by equation,

∂

∂t
pθ (x, t) = L∗pθ (x, t), (4)

where the differential operator L∗ is given by

L∗
= −

∂

∂x
aθ (x) +

1
2

∂2

∂x2
b2θ (x). (5)

The initial condition for the Fokker–Planck equationwhen starting fromaknown location is aDirac delta function, pθ (x|xk) =

δ(x− xk). This initial condition is likely to cause problems for numerical implementations of Eq. (4) due to discontinuity, see
the implementation in Lo (1988) and the remedy proposed in Lindström (2007). Amultivariate version of the Fokker–Planck
equation can for example be found in Lindström et al. (2015, p. 286), but we focus on the univariate version in this paper for
simplicity.

Another method for computing the transition probability is to use the Markov property and law of total probability,
adding and integrating out an intermediate state variable, see Pedersen (1995a,b). Define s such that tk−1 < s < tk. It then
holds that

pθ (xk|xk−1) =


pθ (xk, xs|xk−1)dxs

= Eθ [pθ (xk|xs)|xk−1] . (6)

Monte Carlo methods can easily approximate that expected value, but the use of variance reduction techniques is needed
formost applications, see Durham and Gallant (2002) and Lindström (2012a). However, we cannot expect to be able to solve
either the Fokker–Planck equation (4) or the conditional expectation in Eq. (6) in closed form formore complexmodels. That
means that the computational complexity of any of these approximate maximum likelihoodmethod will be linear (in terms
of expensive operations) in the number of observations.

A possible remedy is the Gauss–Hermite or saddle-point expansion, see Aït-Sahalia and Yu (2006) and Varughese (2013).
These can be very accurate for frequently sampled data but there are also important limitations. The accuracy often relies
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