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a b s t r a c t

Dispersion regression is often used to predict the expected deviance in a generalised linear
model. Using the individual deviance residual as the response variable in that model is
considered the standard approach in dispersionmodelling. In this paper, we investigate an
alternative approach by fitting the dispersion model on the individual Pearson residual
responses, which is more straightforward than and has superior interpretability to the
deviance approach because no transformation on the observed and expected responses
via the likelihood function is required. However, the mean and dispersion parameters are
non-orthogonal if the model parameter estimates are obtained bymaximising the pseudo-
likelihood function. Consequently, the mean and dispersion regression parameters must
be estimated simultaneously, and the estimation algorithm is multidimensional and hence
more complex. As the asymptotic behaviour of both the deviance and Pearson residuals
suggests that they should converge, we expect Pearson residual dispersion models to
perform in the same way as or even better than deviance residual models.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Since it was first proposed by Wedderburn (1974), the quasi-likelihood function, based on which maximum likelihood
(ML) estimates of the dispersion model can be determined, has generally been considered the orthodox approach in
dispersion modelling. The deviance residual resulting from the quasi-likelihood function has therefore generally been
considered the response variable in the dispersionmodel. However, as a goodness-of-fit measure of themodel, the deviance
residual is sometimes lacking in interpretability because of its dependence on the likelihood function.

Other residuals such as the Pearson or Anscombe residual have been suggested in the literature as alternatives to the
deviance residual. However, only a few researchers have devoted attention to them, and their potential in dispersion
modelling has never been studied in detail or completely exploited, althoughMcCullagh and Nelder (1989) briefly discussed
it. Owing to its definition, the Pearson residual has a higher degree of interpretability as it measures the standardised
distance between an observed and expected response directly, and is therefore mostly used primarily for the goodness
of fit of contingency tables as the cell frequency is usually considered as the Poisson count.

In this paper, we show how individual Pearson residuals can be used as response variables in a double generalised
linear model (GLM) of mean and dispersion. As demonstrated in later sections, the estimation algorithm becomes more
complex because the mean and dispersion parameters are non-orthogonal when maximising a pseudo-likelihood (PL)
function (Carroll and Ruppert, 1988) in which individual Pearson residuals represent the response variables. As proposed by
Smyth (1989) and Smyth and Verbyla (1996), simultaneous estimation of the double mean and dispersion model is needed
if the parameters are non-orthogonal. Joint estimation of the regression parameters of both submodels, however, leads to
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two-dimensional score functions and a highly complex informationmatrix structure, which can be simplified only in special
circumstances. By contrast, the asymptotic properties of the ML estimates obtained from the PL function are the same as
those derived from the quasi-likelihood function, and we thus expect our approach to provide a real alternative method to
dispersion modelling.

By means of simulation studies, we investigate the features of the ML estimates and the goodness of fit of the models on
Poisson- and Gaussian-distributed responses. The exploitation of individual Pearson residuals as a useful analytic tool and
the efficiency of that tool in detecting underestimated standard errors forma significant part of our research. In particular,we
compare the results with models in which the overdispersion feature is ignored. The applicability of our model is examined
via a case study example given in a later section of the paper.

2. Generalised linear dispersion model

Let Y = {Y1, Y2, . . . , Yn} be an n-dimensional random vector whose underlying distribution belongs to the exponential
family. The density of the ith observation is given by

f (yi; θi, φ) = exp


1
a(φ)

[yiθi − b (θi)] + c (yi, φ)


, (1)

where θi is the canonical, and φ the dispersion parameter. In our model formulation, we consider the special case of the
function a(φ) = φ/wi, where wi is the weight of the ith observation, which is usually equal to 1. The cumulant function
denoted by b (·) satisfies the relationship ∂b/∂θi = ḃ (θi) = µi and ∂2b/∂θ2

i = b̈ (θi) = V (µi), the variance function of yi,
whereas the form of c (·) depends on the distribution of yi.

Let the row vector xi = {xi1, . . . , xik} be the ith row of an n × k matrix X . E (yi | xi) = µi is the conditional expectation
of yi predicted by a GLM (Nelder and Wedderburn, 1972):

E (yi | xi) = µi = g−1 (xiβ) , (2)

where β = {β1, . . . , βk}
ᵀ is the unknown regression coefficient vector to be estimated and g−1 (·) is the inverse function

of an at least twice differentiable link function g to map the linear predictor ηi = xiβ to the scale of µi. For instance, if Y is
Poisson-distributed, the natural choice for g−1 would be exponential, asµi is positive. For a Gaussian-distributed Y , we have
the special case of a general linear regression where g is identical. Model (2) is called themean submodel in the following.

The generalised Pearson statistic r2P is widely used as a goodness-of-fit measure, particularly for contingency tables. It is
defined as the standardised complete sample deviance of the expected to the observed response:

r2p =

n
i=1

wi(yi − µi)
2

V (µi)
,

where V (µi) is the aforementioned variance function with

Var (yi) =
φ

wi
V (µi) . (3)

Note that each term in the summation measures the individual squared Pearson residual r2P i with asymptotic response
mean φ. As the definition suggests, the Pearson residual is a straightforwardmeasure of the goodness of fit of µ̂i. In contrast,
goodness of fit based on the individual deviance residual, which is defined as

Di(yi, µi) = 2[ℓ(yi, yi) − ℓ(yi, µi)] = 2wi

 yi

µi

yi − ti
V (ti)

dti, (4)

depends either on evaluation of the likelihood function

ℓ(yi, µi) =

n
i=1


wi

φ
[yiθi − b (θi)] + c (yi, φ)


at yi and µi or on the integration of the quasi-likelihood function, as the last equality sign in Eq. (4) suggests. Depending on
the choice of g(·), and consequently g−1(·), the range of µi may not conform to the domain of b−1(·). The Pearson residual
is therefore advantageous in terms of its interpretability and computational convenience.

In general, we suppose for all i that the dispersion parameter φ is constant in the sense that we use merely one value
to describe the dispersion of the entire sample. If Yi is continuous, the underlying distributions such as normal or gamma
distributions contain two parameters, whereas discrete distributions usually have only one. As a result, φ can be estimated
from the sample for Gaussian or gamma responses, whereas count and binary responses are assumed to have a dispersion
equal to 1.

However, homoscedasticity can actually be rarely found in empirical studies, as well as satisfying the relationship
amongst µi, φ and Var(yi), as defined in (3), in reality, and the theoretical dispersion often exceeds the empirical one.
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