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a b s t r a c t

A Bayesian stochastic search variable selection (BSSVS) method is presented for variable
selection in quantile regression (QReg) for ordinal models. A Markov Chain Monte Carlo
(MCMC) method is adopted to draw the unknown quantities from the full posteriors.
Through simulations and analysis of an educational attainment dataset, the performance
of the proposed approach is compared with some existing approaches, showing that the
proposed approach performs quite good in comparison to some other methods.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

QReg models provide more extensive statistical models than standard mean regression models and have drawn
enormous interest in the modern literature. QReg has been used in many different areas, including biomedical studies,
ecology, economics, political economy, growth charts, microarray studies, the social sciences, and survival analysis. A
comprehensive review of some recent applications can be seen in Alhamzawi (2013), Koenker (2005) and Yu et al. (2003).

Although the asymptotic theory for QRegmodels has been well studied, inference for these models is difficult, especially
for ordinal responses. In contrast, a Bayesian formulation for QReg enables exact inference, even when the number of
observations is small, and is well suited to incorporate ordinal responses. Since QReg does not assume any parametric
distribution for the errors, different Bayesian QReg techniques have been suggested by Yu and Moyeed (2001), Kottas and
Gelfand (2001), Dunson et al. (2007), Kottas and Krnjajić (2009), Reich et al. (2010), Taddy and Kottas (2010) and Noufaily
and Jones (2013). However, a convenient parametric distribution choice is the skewed Laplace distribution (SLD) reported in
Yu andMoyeed (2001), because themode of the resulting posterior under a flat prior for the unknown quantityβ is the usual
QReg estimates. Although the assumption of the SLD for the errors may cause some apprehension due to its vitiating the
nonparametric modality of a QReg, there have been many extensive numerical studies showing that Bayesian approaches
are quite insensitive to the assumptions of the error distribution, and even if the implied distribution does not follow a SLD,
the outcomes would be acceptable (see, for example, Li et al., 2010; Yuan and Yin, 2010; Ji et al., 2012; Lum and Gelfand,
2012). In addition, Koenker and Machado (1999). In addition, Koenker and Machado (1999) presented a goodness of fit for
QReg depends on the SLD and demonstrate that the asymptotic features work well even if the error does not follow a SLD.
Furthermore, there are mathematical justifications for using the SLD, which can be found in Sriram et al. (2013), Alhamzawi
and Yu (2013) and Komunjer (2005).

Model selection plays a significant role in constructing QReg models. In particular, the prediction accuracy can be
increased by selecting the active variables in the regression. Since the seminal work of Breiman (1995), several shrinkage
methods have been applied to model selection in classical mean regression models. See, Lasso (Tibshirani, 1996), SCAD (Fan
and Li, 2001), the least-angle regression (LARS; Efron et al., 2004), fused Lasso (Tibshirani et al., 2005), adaptive Lasso (Zou,
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2006), and group Lasso (Yuan and Lin, 2006). A comprehensive review of some recent shrinkage methods can be found
in Tibshirani (2011). A natural interpretation for shrinkage methods is to follow the Bayesian paradigm as shown by the
Bayesian Lasso of Hans (2009), Park and Casella (2008) and Bae and Mallick (2004).

With regard to QReg, frequentist statisticians have applied shrinkage approaches to subset selection in QReg by
automatically identifying the subset of predictors having nonzero coefficients. See, for example, Lasso (Koenker, 2004; Li and
Zhu, 2008), adaptive Lasso (Wang et al., 2007; Bang and Jhun, 2012;Wang et al., 2013), the elastic net (Slawski, 2012), group
Lasso (Kato, 2011), and SCAD (Wuand Liu, 2009; Jiang et al., 2012). Similarly, fromaBayesian view, Li et al. (2010) suggested a
Bayesian regularized method for QReg and considered different shrinkage techniques. Alhamzawi (2013) consider Bayesian
adaptive Lasso QReg and show that Bayesian QReg with the adaptive Lasso penalty generally performs better than with
Bayesian Lasso, Bayesian elastic net, or non-Bayesian regularized QReg methods. Alhamzawi (in press) proposed Bayesian
elastic net Tobit QReg and Benoit et al. (2013) studied Bayesian Lasso binaryQReg. However, as no pointmass at 0 is allocated
in the Bayesian regularized techniques, updates of insignificant coefficients from the conditional distribution are never fixed
precisely to zero. Therefore, some ad hoc methods could be applied to identify the significant coefficients. Alternatively,
several BSSVS methods for identifying the active predictors in a QReg model have been suggested recently (see, Yu et al.,
2013 and Alhamzawi and Yu, 2013). In this paper, the BSSVS framework is extended to QReg for ordinal models. This is the
first paper to discuss variable selection in QReg for ordinal models.

Ordinal outcome data are often collected in many different areas, including behavioral research, ecology, economics,
education, geology, medicine, the social sciences, and psychology. For example, in a survey regarding one’s educational
experience (EX), outcomes of interest may be recorded as follows (Jeliazkov et al., 2008): 1 for ‘‘elementary school graduate
(ESG)’’, 2 for ‘‘high school graduate (HSG)’’, 3 for ‘‘some college (SC)’’, and 4 for ‘‘college graduate (CG)’’. Although I could
order the people by 1, 2, 3 and 4 according to these four types of EX, the size of the difference between the types of EX is
inconsistent. In other words, the score 2 implies more EX (HSG) than 1 (ESG), but this result does not imply that 2 is twice as
much EX as 1. It is of enormous interest here to apply amodel that incorporates the ordinal nature of the outcome of interest.
Standard ordinal regression models have been used to describe the relationship between an ordinal outcome and a set of
regressors. As a useful supplement to classical ordinal regression, QReg for ordinal models provides an efficient statistical
model than classical ordinal regression. However, ordinal QReg has been addressed only in the last few years, for example,
see, Hong and Zhou (2013), Goffe et al. (1994), Hong and He (2010), and Kirkpatrick and Vecchi (1983). Ordinal QReg can
be described as a linear QReg using a latent continuous dependent variable which is incompletely seen. Following Rahman
(2016), in this paper the pth quantile for the latent variable wi is simulated according to the regression model

wi = x′

iβ + εi, i = 1, 2, . . . , n, (1)
where xi is a k × 1 vector of regressors for the ith unobserved continuous latent random variable wi, β is a k × 1 vector of
parameters, and εi is the error term. Then, the observed outcome of interest yi for the ith observation is described by the
classification of the unobserved outcome wi according to

yi = j if δj−1 < wi ≤ δj, j = 1, . . . , J, (2)
where δ0, . . . , δJ are cut-points whose coordinates satisfy

−∞ = δ0 < δ1 < · · · < δJ−1 < δJ = +∞. (3)
From a Bayesian framework, Rahman (2016) proposed a Bayesian hierarchical model for ordinal QReg using the SLD for

the errors and sampling the QReg coefficients β from its posterior using the Gibbs sampling method.
BSSVS was first introduced by George and McCulloch (1993) for regressor selection in linear regression model, and now

has widespread regression applications, such as multivariate Bayesian models (Lee et al., 2003; Ai-Jun and Xin-Yuan, 2010),
gene selection (Yi et al., 2003), regression mixture modeling (Gupta and Ibrahim, 2007), logistic mixed models (Kinney and
Dunson, 2007), linear QReg (Yu et al., 2013; Alhamzawi and Yu, 2012), and Tobit and binary QReg (Ji et al., 2012). In QReg,
BSSVS searches for models having high posterior probabilities and searches for regressors having high marginal inclusion
probabilities (MIPs) by (1) fixing the quantile level and the total number of iterations; (2) starting with the full model of
regressors; (3) selecting mixture prior distributions to removing the inactive regressors in the regression by zeroing their
coefficients; (4) sampling the parameters from the posteriors; (5) estimating the MIPs for each regressor using the amount
of BSSVS samples containing each regressor; and (6) estimating the posterior model probabilities (PMPs) for each model
using the amount of BSSVS samples spent in each subset (model).

Section 2 introduces the structure of the proposed hierarchical Bayesian ordinal QReg model and discusses the prior
specifications. Section 3 presents an MCMC-based computation technique for variable selection in ordinal QReg. Section 4
introduces the results of three simulation scenarios to investigate the performance of the proposed method, and Section 5
illustrates the proposed method using educational attainment dataset. Section 6 provides the conclusions of this work.

2. Methods

2.1. Quantile regression

Let yi denote the response variable. Then, the pth QReg takes the form

Qyi|xi(p) = x′

iβ, (4)
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