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a b s t r a c t

Many procedures have been proposed for regression analysis of interval-censored failure
time data arising from the Cox or proportional hazards model. However, most of these
existing methods only apply to the situation where the censoring mechanism generating
censoring intervals is independent of the failure time of interest, and it is well-known that
sometimes this may not be true in practice. To address this issue, a new approach that
allows the dependence between the censoringmechanism and the failure time is proposed.
More specifically, a situation where the dependence is through the length of censoring
intervals is considered as it is often the case in follow-up studies. The asymptotic properties
of the proposed estimators are established and the numerical studies are conducted for the
assessment of the finite sample properties of the estimators.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

This paper discusses regression analysis of interval-censored failure time data arising from the Cox or proportional
hazards model. By interval-censored data, we mean that instead of being observed exactly, the failure time of interest is
observed only to belong to an interval, commonly denoted by (L, R] or L < T ≤ R (Chen et al., 2012; Finkelstein, 1986;
Huang, 1996; Sun, 2006). That is, the occurrence of the failure event of interest is known only to be within the interval (L, R].
Examples of the areas that often produce such data include health or medical follow-up studies such as clinical trials as well
as social sciences. In addition, it is easy to see that the interval-censored data include right-censored data, whose analysis
has been extensively discussed in the literature, as a special case (Kalbfleisch and Prentice, 2002).

The analysis of interval-censored failure time data has been attracting more and more attention recently and especially,
manymethodshave beendeveloped for their regression analysis under various regressionmodels including theproportional
hazardsmodel. For example, a pioneeringworkwas given by Finkelstein (1986), which discussed the fitting of the Coxmodel
to the data, and for the sameproblem,Goggins et al. (1998) and Zhang et al. (2010) developed aMarkov chainMonte Carlo EM
algorithm and a spline-based maximum likelihood approach, respectively. Also among others, Zhang et al. (2005) proposed
an estimating equation procedure for fitting the linear transformation model to interval-censored data. More and relatively
complete references on this can be found in Chen et al. (2012) and Sun (2006).

For the analysis of interval-censored failure time data, it is easy to see that in addition to the failure time T of interest,
one may need to concern the mechanism that generates L and R also. For this, most of the existing methods assume the
noninformative or independent mechanism under which one can carry out the conditional analysis given L < T ≤ R.
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On the other hand, it is apparent that this may not be true in some situations. In a clinical trial with the follow-up of both
healthy subjects and patients, for example, the patientsmay tend to paymore clinical visits than the scheduled ones. Several
methods have been proposed in the literature for the analysis of dependent interval-censored data. For example, Finkelstein
et al. (2002) and Betensky and Finkelstein (2002) considered the one-sample problem related to such data, and Zhang et al.
(2007) gave a latent variable-based estimation procedure for regression analysis of dependent interval-censored data from
the Cox model. Note that the method in Zhang et al. (2007) used a log-normal frailty to describe the dependence structure
and it is apparent that in reality, it may be difficult to check such specific dependence structure. In other words, a more
general model or procedure would be clearly needed.

In the following, we will discuss the same problem considered as Zhang et al. (2007) and present a more general, copula
model-based approach. More specifically, we will assume that the pair (L, R] is generated from an underlying observation
process and focus on the case where the dependence between the failure time and the censoring mechanism can be
described by the length of censoring intervals. One situation where this can happen is medical follow-up studies where
subjects may paymore or less clinical visits. For the analysis, a maximum likelihood estimation procedure will be developed
with the use of I-spline functions (Ramsay, 1988; Lu et al., 2007). Both the model and the method will be described in the
next section. In Section 3, some asymptotic properties of the proposed estimators are established, including the consistency
and asymptotic normality of the estimated regression parameters, and the variance estimation is discussed. Some simulation
results are presented in Section 4 and Section 5 provides an illustrative example. Finally Section 6 contains some discussion
and concluding remarks.

2. Semiparametric maximum likelihood estimation

Consider a failure time study that involves n independent subjects and yields only interval-censored failure time data.
For subject i, let Ti denote the failure time of interest and Zi the vector of covariates, and suppose that there exists an array
of underlying observation times Ei = {Ei,j : j = 0, 1, 2, . . .} such that Ei,j < Ei,j′ for any j < j′. DefineWi,j = Ei,j − Ei,j−1, j =

1, 2, . . . , the gap times of the observation process with Ei0 = 0 and assume that given Zi, the Wi,j’s follow the same dis-
tribution. Furthermore assume that Ti may depend on the underlying observation process through the gap times and that
given Zi, {(Ti,Wi,j), j = 1, 2, . . .} follow the same joint distribution. In the following, for each i, define (L̃i, R̃i] to be the ran-
dom interval among (0, Ei,1], (Ei,1, Ei,2], . . . that contains Ti. Note that the mechanism behind the observation process and
censoring intervals here is similar to that behind the mixed case k interval-censored data (Schick and Yu, 2000; Sun, 2006).

In practice such as in medical follow-up studies, there usually exists an administrative censoring time ζi beyond which
the observation process is no longer available. For each i, define Li = max{Ei,j : Ei,j < min(ζi, Ti), j = 0, 1, 2, . . .} and
Ri = min{Ei,j : Ei,j > Li, j = 1, 2, . . .}. Also, define δi = 1 if Ri ≤ ζi and δi = 0 otherwise. Note that when δi = 0, Ri is not
observed but right-censored at ζi and Ti is right-censored. For ease of explanation, we define (L̃i, R̃i] as covering interval and
(Li, Ri] as ‘observed interval’ (even though Ri is not directly observed for right-censored subjects). And define Wi = Ri − Li
as the ‘observed interval length’. It is easy to see that if δi = 1, Wi is exactly observed and Ti lies in the observed interval.
For subjects with δi = 0, note that Li is not necessarily equal to L̃i and also (Li, Ri] may not contain Ti. In fact, since Ri is
right-censored at ζi, we only observe that Ti > Li and Wi > ζi − Li. An illustrative example for this situation with δi = 0 is
given in Fig. 1. Assume that given Zi and Ti belonging to the censoring interval, the distribution of Ti depends on the censoring
interval only through its length. That is, we have

Pr(Ti ≤ t | Li < Ti ≤ Ri; Li = li, Ri = ri, Zi = zi) = Pr(Ti ≤ t | li < Ti ≤ ri;Wi ≡ ri − li, Zi = zi).

Then the likelihood function has the form
n

i=1

[Pr(Li = li < Ti ≤ Ri = ri,Wi = wi)]δi [Pr(Ti > Li = li,Wi > ζi − li)]1−δi .

Let K denote the joint distribution of T and W given Z . Then it is well-known (Nelsen, 2006) that there exists a copula
function Cα(u, v) defined on I2 = [0, 1] × [0, 1] such that

K(t, w) = Cα(FT (t), FW (w)), t ≥ 0, w ≥ 0.

In the above, FT and FW denote the marginal distributions of the T and W given Z , respectively, α, usually referred to as
the association parameter, represents the relationship between T and W , and Cα(u, 0) = Cα(0, v) = 0, Cα(u, 1) = u and
Cα(1, v) = v. Definemα(FT (t), FW (w)) = P(T ≤ t|W = w, Z). Then we have

mα(FT (t), FW (w)) =
∂Cα(u, v)

∂v


u=FT (t),v=FW (w)

.

For the covariate effects, we will consider the following marginal Cox hazard models

λT (t|Zi) = λ1(t) exp(Z ′

iβ), λW (w|Zi) = λ2(w) exp(Z ′

i γ ),

for Ti andWi given Zi, respectively. Here λ1(t) and λ2(w) are unknown baseline hazard functions and β and γ denote vectors
of regression parameters.
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