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a b s t r a c t

The construction of novel sufficient dimension folding methods for analyzing matrix-
valued data is considered. For a matrix-valued predictor, traditional dimension reduction
methods fail to preserve the matrix structure. However, dimension folding methods can
preserve the data structure and improve estimation accuracy. Folded-outer product of
gradient (folded-OPG) ensemble estimator and two refined estimators, folded-minimum
average variance estimation (folded-MAVE) ensemble and folded-sliced regression
(folded-SR) ensemble are proposed to recover central dimension folding subspace (CDFS).
Due to ensemble idea, estimation accuracies are improved for finite samples by repeatedly
using the data. A modified cross validation method is used to determine the structural
dimensions of CDFS. Simulated examples demonstrate the performance of folded ensemble
methods by comparing with existing inverse dimension folding methods. The efficacy of
folded-MAVE ensemble method is also evaluated by comparing with inverse dimension
folding methods for analyzing the Standard & Poor’s 500 stock data set.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Ding and Cook (2014) investigated the relationship between themonthly Dow Jones industrial average index change rate
and 19 daily stock price change rates over the 30 Dow Jones companies from January 2001 to December 2010. The response
is a univariate continuous variable, however, the predictor for each observation is a 19 × 30 matrix. Traditional sufficient
dimension reduction approaches can be applied to suchmatrix-valued data by vectorizing the data into a vector. As pointed
out by Li et al. (2010, hereafter LKA) vectorizing a matrix-/array-valued predictor may lose sufficient information, data
structure and related interpretation. LKA (2010) introduced a concept of central dimension folding subspace (CDFS) and
proposed three inverse estimation methods, folded-sliced inverse regression (folded-SIR), folded-sliced average variance
estimation (folded-SAVE) and folded-directional regression (folded-DR), to reduce the dimensions of amatrix-/array-valued
predictorX asmuch as possiblewhile preserving its intrinsic structure and the regression relationwith a univariate response
Y . If a predictor is vector-valued, sufficient dimension folding reduces to sufficient dimension reduction (Cook, 1994, 1996,
1998). Treating the predictor X as matrix-/array-valued instead of vectorizing it can preserve the original data structure,
important aspects of interpretation, and reduce the number of parameters to enhance estimation accuracy (LKA, 2010).
Along the same line, Pfeiffer et al. (2011) proposed an alternative inverse dimension foldingmethod to folded-SIR and named
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it longitudinal version of sliced inverse regression (LSIR). Ding and Cook (2014) proposed two inverse approaches, dimension
folding principal components analysis (DF-PCA) and dimension folding principal fitted components (DF-PFC), to estimate
CDFS.

Let vec(·) be an operation that stacks a matrix into a vector column by column. Inverse dimension folding approaches
require certain conditions such as the linearity condition and the constant variance condition on the marginal distribution
of vec(X). However, these conditions are not always satisfied, which can make the estimate not stable. Xue and Yin
(2014) considered forward sufficient dimension folding methods for the conditional mean of Y given X , which can attain
a more accurate estimate when conditional mean is of interest. Xue and Yin (2014) proposed a concept of central mean
dimension folding subspace (CMDFS) and its two local estimation methods: folded-OPG and folded-MAVE in analogy to the
development of their counterparts outer product of gradient (OPG) and minimum average variance estimation (MAVE) for
a vector-valued predictor (Xia et al., 2002). A more general situation is considered by Xue and Yin (2015) which includes
CDFS and CMDFS as two special cases. Xue and Yin (2015) performed sufficient dimension folding in reference to a general
functional of the conditional distribution of Y given X . By applying sufficient dimension folding in reference to a specific
functional, the relation between Y and X reflected in that functional is preserved.

In this article, we consider constructing new methods to estimate CDFS based on the ensemble idea introduced by Yin
and Li (2011) for a vector-valued predictor. Yin and Li (2011) considered a general function family F of Y , and introduced a
probability measure on F. Functions f1, . . . , fm are randomly sampled from F according to that probability. They assembled
the central mean subspaces (CMS) of fl(Y ), l = 1, . . . ,m, given a vector-valued predictor to recover the central subspace
(CS). The ensemble idea can be applied to estimate CDFS via a set of CMDFS’s as well. Folded-MAVE has three appealing
advantages in estimating CMDFS: (1) it can exhaustively estimate CMDFS; (2) there is no strong assumption assumed on the
distribution ofX and (3) the estimation procedure of folded-MAVE canbe brokendown into iterative quadratic optimizations
and each step has an explicit solution. However, folded-MAVE method may not recover directions outside CMDFS. Xue and
Yin (2014) pointed out that CMDFS is not invariant under one-to-one transformation of the response variable. Based on
the ensemble idea, we can repeatedly use data to obtain a better estimate of CDFS, which is achieved by estimating CMDFS
for a sufficient large class of transformations of the response variable. We construct folded-OPG ensemble, folded-MAVE
ensemble and folded-sliced regression (folded-SR) ensemble methods to estimate CDFS. The first two ensemble methods
are similar to those developed by Yin and Li (2011), and the folded-SR ensemble method is developed in parallel with its
counterpart sliced regression (SR; Wang and Xia, 2008) for a vector-valued predictor.

The rest of this article is organized as follows. In Section 2, we study the ensemble theory on characterizing CDFS for
a matrix-valued predictor. In Section 3, we introduce algorithms of folded-OPG ensemble, folded-MAVE ensemble and
folded-SR ensemble and propose a cross validation criterion to estimate the structural dimensions of CDFS. In Section 4, we
comment on the consistency and convergence rate of folded-MAVE ensemble. Simulation studies and a real data analysis
are included in Sections 5 and 6, respectively, followed by a discussion on characterizing CDFS for an array- or higher
dimensional valued predictor in Section 7. A short discussion is in Section 8.

2. Characterizing CDFS

In this section, we develop sufficient dimension folding methods to estimate CDFS based on the ensemble idea (Yin and
Li, 2011) for a matrix-valued predicator. Definitions and theorems in this section are straightforward extensions from Yin
and Li (2011). Let the predictor variable X be a p× q randommatrix with its support ΩX and Y be an s-dimensional random
vector with its support ΩY . Let F be a family of functions f : ΩY → F ⊆ R, which means that a transformation f can project
a vector-valued Y to the scalar field F. Let PS denote the orthogonal projection onto subspace S. Xue and Yin (2014) denoted
CMDFS for the conditional mean E[f (Y )|X] as SE[f (Y )|◦X◦] which is equal to SE[f (Y )|X◦] ⊗ SE[f (Y )|◦X]. The subspaces SE[f (Y )|◦X]

and SE[f (Y )|X◦] are the intersections of all the respective subspaces SL and SR of Rp and Rq such that

E[f (Y )|X] = E[f (Y )|PSLXPSR ]. (1)

LKA (2010) denoted CDFS of Y versus X as SY |◦X◦ = SY |X◦ ⊗ SY |◦X where SY |◦X and SY |X◦ are the intersections of all the
respective subspaces SL and SR of Rp and Rq such that

YyX |PSLXPSR . (2)

Definition 1. Let F be a family of measurable F-valued functions defined on ΩY . If

span{SE[f (Y )|◦X◦] : f ∈ F} = SY |◦X◦,

the family F is said to characterize the CDFS.

Our goal is to identify the family F, so that the dimension folding subspaces for the conditional means E[f (Y )|X], when
combined for a set of f (Y ), can recover the dimension folding subspace for Y versus X . Let FY denote the distribution of Y
and L1(FY ) be the class of functions f (Y ) such that E|f (Y )| < ∞, with the norm E|f (Y )|. Let L2(FY ) be the class of functions
f (Y ) with finite variances, with the inner product ⟨f1, f2⟩ = E[f1(Y )f2(Y )]. And let B be the family of measurable indicator
functions of Y , which means B = {IB : B is a Borel set in ΩY }. We have the following theorem:
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