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a b s t r a c t

The problem of temporal data clustering is addressed using a dynamic Gaussian mixture
model. In addition to themissing clusters used in the classical Gaussianmixturemodel, the
proposed approach assumes that the means of the Gaussian densities are latent variables
distributed according to random walks. The parameters of the proposed algorithm are
estimated by the maximum likelihood approach. However, the EM algorithm cannot be
applied directly due to the complex structure of the model, and some approximations are
required. Using a variational approximation, an algorithm called VEM-DyMix is proposed
to estimate the parameters of the proposed model. Using simulated data, the ability of
the proposed approach to accurately estimate the parameters is demonstrated. VEM-
DyMix outperforms, in terms of clustering and estimation accuracy, other state-of-the-art
algorithms. The experiments performed on real world data from two fields of application
(railway condition monitoring and object tracking from videos) show the strong potential
of the proposed algorithms.
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1. Introduction

Cluster analysis, which consists in automatically identifying groups into data sets, remains a central issue in many appli-
cations including web data mining, marketing, bio-informatics, image segmentation and text mining. The Gaussian mixture
model (GMM) (McLachlan and Peel, 2004; Titterington et al., 1985), used conjointly with the Expectation–Maximization
(EM) algorithm (Dempster et al., 1977), is now well known to provide powerful clustering solutions. However, some chal-
lenges still remain for the processing of non-stationary data.

This study was motivated by the clustering of temporal data acquired on some critical railway components, for charac-
terizing the dynamic of their degradations. Its final objective is to build a decision-aided support for their preventive main-
tenance. To solve this problem, we propose to automatically extract, from temporal data, clusters whose centers evolve over
time.

The general situation, where at each time a set of multivariate observations is acquired, is considered in this article. Fig. 1
shows an example of such temporal data, where we have, for instance, three observations at t = 1 and five observations at
t = 2.

One way to address this specific clustering problem is to assume that the data are distributed according to a Gaussian
mixture model whose centers are linear functions of time (DeSarbo and Cron, 1988; Wedel and DeSarbo, 1995). However, a
linear evolution of the clusters may turn out to be inefficient for complex nonlinear dynamics. For tracking time-varying
spike shapes, Calabrese and Paninski (2011) have proposed a method which consists of maximizing the log-likelihood
criterion associated to the classical Gaussian mixture model, penalized by a term that takes into account the temporal
evolution of the clusters.

In this work, a dynamic latent variable model dedicated to temporal data clustering is introduced. The frequentist
approach was adopted to estimate its parameters. Unfortunately, estimating the parameter of this model by the maximum
likelihood approach via the EM algorithm is intractable. Difficulties arise in the E step due to the dynamic structure of
the model, which requires integrations over all possible configurations of the hidden variables. Some approximations are
therefore required.

Viewing EM as the alternate optimization of an auxiliary function, respectively with respect to the distribution over the
latent variables and the parameters (Neal and Hinton, 1998), a variational approximation is proposed in this paper. The idea
is to restrict the latter optimization problem to a family of distribution over latent variables, which can be factorized into
independent factors. In this case, a lower bound of the log-likelihood criterion is maximized. Variational inference, which
was initiated in the mid-1990s, is usually applied to complex models involving missing values or based on latent structures
when the direct implementation of standard EM is difficult to be achieved (Jaakkola and Jordan, 1997; Jordan et al., 1998).
It has been proved to provide relevant estimates of mixture models in different configurations (Govaert and Nadif, 2008).

Alternative methods can be used to tackle the maximum likelihood problem, such as stochastic versions of EM (see
McLachlan andKrishnan, 2008, chap. 6). For instance, the SEM-Gibbs algorithmproposed byKeribin et al. (2010) runs aGibbs
sampler to simulate the unknown labels. However,we opted for a variational approximation,which is computationallymore
attractive.

The paper is organized as follows. Section 2 briefly reviews the penalizedmaximum likelihood approach of Calabrese and
Paninski (2011). In Section 3, a dynamic model is formalized for clustering temporal data, and a new parameter estimation
method based on a variational EM algorithm is presented. An incremental version of the proposed algorithm is formulated
in Section 4. Experiments carried out on simulated and real data are presented in Section 5. Finally, conclusions and future
works are proposed in Section 6.

The following notations will be used throughout this paper: x = (x1, . . . , xT ) denotes the sequence of T observed data
to be classified, where xt is itself a sub-sample of nt multivariate observations (xt1, . . . , xtnt ), with xti ∈ Rd

∀i = 1, . . . , nt .
The unobserved classes associated to the observations will be denoted by z = (z1, . . . , zT ), where zt = (zt1, . . . , ztnt ), with
zti ∈ {1 . . . , K}. The means of the Gaussian densities will be denoted as µ = (µ

(t)
k ; t = 1, . . . , T , k = 1, . . . , K).

To simplify the notations, the sums and products relative to time, observations at each time and clusters will be
subscripted respectively by the letters t , i, k without indicating the limits of variation. So, for instance, the sum


t stands

for
T

t=1, the sum


i stands for
nt

i=1,


t,i,k stands for
T

t=1
nt

i=1
K

k=1 and


t,i,k stands for
T

t=1
nt

i=1
K

k=1.

2. A penalized likelihood approach for temporal data clustering

This section gives a brief review of the temporal data clustering approach introduced by Calabrese and Paninski (2011),
which consists in maximizing the log-likelihood criterion associated to the classical Gaussian mixture model (GMM)
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