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a b s t r a c t

Heteroscedasticity testing is of importance in regression analysis. Existing local smoothing
tests suffer severely from curse of dimensionality even when the number of covariates is
moderate because of use of nonparametric estimation. A dimension reduction-basedmodel
adaptive test is proposed which behaves like a local smoothing test as if the number of
covariates was equal to the number of their linear combinations in the mean regression
function, in particular, equal to 1 when the mean function contains a single index. The test
statistic is asymptotically normal under the null hypothesis such that critical values are
easily determined. The finite sample performances of the test are examined by simulations
and a real data analysis.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

As heteroscedasticity structure would make a regression analysis more different than that under homoscedasticity
structure, a heteroscedasticity check is required to accompany before stepping to any further analysis since ignoring the
presence of heteroscedasticity may result in inaccurate inferences, say, inefficient or even inconsistent estimates. Consider
a regression model with the nonparametric variance model:

Var(Y |X) = Var(ε|X), (1)

where Y is the response variable with the vector of covariates X ∈ Rp and the error term ε satisfies E(ε|X) = 0. Het-
eroscedasticity testing for the regressionmodel (1) has receivedmuch attention in the literature. Cook andWeisberg (1983)
and Tsai (1986) proposed respectively two score tests for a parametric structure variance function under linear regression
models and first-order autoregressivemodels. Simonoff and Tsai (1994) further developed amodified score test under linear
models. Zhu et al. (2001) suggested a test that is based on squared residual-marked empirical process. Liero (2003) advised
a consistent test for heteroscedasticity in nonparametric regression models, which is based on the L2-distance between the
underlying and hypothetical variance functions. This test is analogous to the one proposed by Dette andMunk (1998). Dette
(2002), Zheng (2009) and Zhu et al. (2015a), extended the idea of Zheng (1996), whichwas primitively used for testingmean
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regressions, to heteroscedasticity check under several different regression models. Further, Lin and Qu (2012) extended the
idea of Dette (2002) to semi-parametric regressions. Moreover, Dette et al. (2007) studied amore general problem of testing
the parametric form of the conditional variance under nonparametric regression models.

The hypotheses of interest are:

H0 : ∃ σ 2 > 0 s.t. P{Var(ε|X) = σ 2
} = 1

against

H1 : P{Var(ε|X) = σ 2
} < 1, ∀ σ 2. (2)

To motivate the test statistic construction, we comment on Zhu et al. (2001)’s test and Zheng (2009)’s test as the represen-
tatives of global smoothing tests and local smoothing tests, respectively. Thanks to the fact that under the null hypothesis,

E(ε2 − σ 2
|X) = 0 ⇔ E


(ε2 − σ 2)I(X ≤ t)


= 0 for all t ∈ Rp,

Zhu et al. (2001) then developed a squared residual-marked empirical process as

Vn(x) = n−1/2
n

i=1

ε̂2i {I(xi ≤ x)− Fn(x)},

where ε̂2i = {yi − ĝ(xi)}2 with ĝ(·) being an estimate of the regression mean function. A quadratic functional form such as
the Crämer–vonMises type test can be constructed. But, there exist two obvious disadvantages of this global smoothing test
though it works well even when the local alternative hypotheses converge to the null hypothesis at a rate of O(1/

√
n). First,

the data sparseness in high-dimensional space means that this global smoothing test suffers from the dimensionality prob-
lem, even for large sample sizes. Second, it may be invalid in numerical studies of finite samples when the dimension of X is
high. This is because the residual-marked empirical process for over heteroscedasticity involves nonparametric estimation
of the mean function g and thus, the curse of dimensionality severely affects the estimation efficiency. Zheng (2009)’s test
is based on a consistent estimate of E{E2(ε2 − σ 2

|X)f (X)} in the following form:

S̃n =
1

n(n − 1)

n
i=1

n
j≠i,j=1

K̃h

xi − xj


(ε̂2i − σ̂ 2)(ε̂2j − σ̂ 2),

where σ̂ 2
= n−1n

i=1 ε̂
2
i , K̃h(·) = K̃(·/h)/hp with a p-dimensional multivariate kernel function K̃(·) and h is a bandwidth.

As a local smoothing-based test, Zheng (2009)’s test can work in the scenario where the local alternative models converge
to the hypothetical model at the rate of O(n−1/2h−p/4), where p denotes the dimension of the covariate X . Note that the
bandwidth h converges to zero at a certain rate. Thus, O(n−1/2h−p/4) can be very slow when the dimension p is large. Local
smoothing tests severely suffer from the curse of dimensionality. To illustrate those disadvantages, Fig. 1 in Section 4 de-
picts the empirical powers of Zheng (2009)’s test and Zhu et al. (2001)’s test across 2000 replications with the sample size of
n = 400 against the dimension p = 2, 4, 6, 8, 10, 12 for a model. This figure clearly suggests a very significant and negative
impact from the dimension for the power performance of Zheng (2009)’s test and Zhu et al. (2001)’s test: when p is getting
larger, the empirical power is getting down to a very low level around 0.1 no matter the mean regression function g(·) is
fully nonparametric or semiparametric with β⊤X in the lieu of X . The details are presented in Section 4.

Therefore, how to handle the serious dimensionality problem is of great importance. The goal of the present paper is to
propose a new test that has a dimension reduction nature.

If the mean regression model has some dimension structure, this structure information may be useful to construct
efficient heteroscedasticity test statistics. Motivated by this observation, we consider a general regression model in the
following form:

Y = g(B⊤

1 X)+ δ(B⊤

2 X)e, (3)

where ε = δ(B⊤

2 X)e, B1 is a p×q1 matrix with q1 orthonormal columns and q1 is a known number satisfying 1 ≤ q1 ≤ p, B2
is a p × q2 matrix with q2 orthonormal columns, q2 is an unknown number satisfying 1 ≤ q2 ≤ p, e is independent of X
with E(e|X) = 0 and the functions g and δ are unknown. This model is semiparametric in the mean regression function. We
assume that under the null hypothesis, the function δ(·) is a constant. It is worth noting that because the functions g and δ
are unknown, the following model with nonparametric variance function δ(·) can also be reformulated in this form:

Y = g(B⊤

1 X)+ δ(X)e = g(B⊤

1 X)+ δ(B2B⊤

2 X)e

≡ g(B⊤

1 X)+ δ̃(B⊤

2 X)e,

where B2 is any orthogonal p × p matrix. That is, q2 = p. In other words, any nonparametric variance model (1), up to the
mean function, can be reformulated as a special multi-index model with q2 = p. This model covers many popularly used
models in the literature, including the single-index models, the multi-index models and the partially linear single index
models. When the model (3) is a single index model or partially linear single index model, the corresponding number of the
index becomes one or two, respectively.
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