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a b s t r a c t

Consider a semiparametric regression model in which the mean function depends on a
finite-dimensional regression parameter as the parameter of interest and an unknown
function as a nuisance parameter. A method of inference in such models is proposed,
using a type of integrated likelihood in which the unknown function is eliminated by
averagingwith respect to a given distribution, whichwe take to be a Gaussian process with
a covariance function chosen to reflect the assumptions about the function. This approach
is easily implemented and can be applied to a wide range of models using the same basic
methodology. The consistency and asymptotic normality of the estimator of the parameter
of interest are established under mild conditions. The proposed method is illustrated on
several examples.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider semiparametric regression models in which the mean of the response depends on a finite-dimensional
regression parameter β as the parameter of interest as well as an unknown function γ (·) as a nuisance parameter; in
addition, such models generally contain a parameter φ parameterizing the covariance structure of the errors in the model.
Our goal is non-Bayesian inference for the parameter β in the presence of the unknown function γ .

In the usual approaches to inference in semiparametric regression models, the function γ is estimated using some type
of smoothingmethod, such as kernel estimation or splines. See e.g., Eubank (1999), Hastie and Tibshirani (1990), Hastie et al.
(2001), Ruppert et al. (2003), and Wahba (1990) for general discussions of estimation in semiparametric regression models
along with many specific results.

Here we use likelihood inference for β , eliminating γ by treating it as a Gaussian process and averaging over it, forming
a type of integrated likelihood (Berger et al., 1998; Severini, 2007; He and Severini, 2014). We refer to this methodology as
Gaussian process semiparametric regression (GPSR).

It is important to emphasize that the Gaussian process assumption for γ is used only as a method of eliminating it from
the likelihood. In particular, we study the proposed estimators through their frequency properties in the model in which γ
is an unknown fixed function.

The GPSR approach has several advantages over more traditional methods of estimation in semiparametric models. One
is that the integrated likelihood is based on observation of a Gaussian random vector, with a linear specification for the
mean and a parametric covariance matrix; thus, the calculations use standard statistical software for linear models with a
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parametric covariance structure. Parameters appearing in the covariance function of the Gaussian process, which control the
amount of smoothing, are handled automatically; a separate method to choose the ‘‘smoothing parameter’’ is not needed.
This is particularly useful in models with correlated errors. It is well-known that choosing the smoothing parameter for
semiparametric regression models is often difficult (Opsomer et al., 2001). Although some progress has been made (see,
e.g., De Branter et al., 2011; Yao and Li, 2013), it is still a challenging problem in many models.

More importantly, the methodology can be applied in any model in which the integrated likelihood can be determined,
making it useful inmore complexmodels. Such a determination generally requires properties of Gaussian random functions,
which are well-studied with many results available; see, for example, Ash and Gardner (1975), Laning and Battin (1956),
and Rasmussen andWilliams (2006). For instance, the same basic method can be used in a wide range of models, including
the partially linear model (Engle et al., 1986; Heckman, 1986; Speckman, 1988; Lin and Carroll, 2001), shape-invariant
models (Lawton et al., 1972; Härdle, 1990, Ch. 9), varying-coefficient models (Hastie and Tibshirani, 1993; Fan and Zhang,
1999), and models depending on the unknown function through a linear functional (Vardi and Lee, 1993); in addition, it
can handle any type of parametric correlation structure for any of these models. The goal of this paper is to show that
how the Gaussian process approach can be used in many semiparametric regression models by appropriately modeling the
covariance structure of the data. The proposed methodology is applied to a number of examples, illustrating the usefulness
of the GPSR method.

The outline of the paper is as follows. In Section 2, a review of Gaussian process regression and its application to
semiparametric regression models is given. The application of the GPSR method to specific semiparametric regression
models is considered in Section 3. The asymptotic properties of the estimators of the parametric components of the
model are presented in Section 4. Section 5 considers several numerical examples. Technical details are given in the
Appendix.

2. Review of Gaussian process regression

2.1. Nonparametric regression

Consider the model Yj = γ (zj) + ϵj, j = 1, . . . , n, where γ is an unknown function, z1, . . . , zn are fixed constants
taking values in a set Z, and ϵ1, . . . , ϵn are independent normal random variables each with mean 0 and standard deviation
σ . Gaussian process regression is based on modeling γ a Gaussian process with mean function 0 and covariance function
Kλ(·, ·), where, for each λ, Kλ is a real-valued function onZ×Z and λ ∈ Λ is an unknown parameter vector. In addition, γ (·)
and the errors ϵ1, ϵ2, . . . , ϵn are assumed to be uncorrelated. This distribution is often viewed as a type of prior distribution
for γ .

Under the Gaussian process distribution, (γ (z1), . . . , γ (zn))T has a multivariate normal distribution with mean vector 0
and covariance matrix based on

Cov(γ (zj), γ (zk)) = Kλ(zj, zk), j, k = 1, . . . , n. (1)

It follows that marginal distribution of Y ≡ (Y1, . . . , Yn)
T is multivariate normal with mean vector 0 and covariance matrix

σ 2In +Σλ where In is the n × n identity matrix andΣλ is the n × nmatrix with (j, k)th element given by (1).
For z∗

∈ Z, the conditional expected value of γ (z∗) given the data is given byΣ∗

λ (σ
2In +Σλ)

−1Y whereΣ∗

λ is the 1 × n
matrix representing the covariance matrix of γ (z∗) and (γ (z1), . . . , γ (zn))T; this may be viewed as a type of Best Linear
Unbiased Predictor (BLUP). This expression, as z∗ varies, yields the Gaussian process regression estimator of γ , with any
unknown parameters replaced by estimators. Many estimators have been proposed for these, including likelihood-based
estimators as well as those based on cross-validation. See, Zhu et al. (1998), Williams (1999), Seeger (2004), Rasmussen and
Williams (2006) andMurphy (2012) for general discussions ofGaussian process regression.MacKay (1999) and Sundararajan
and Keerthi (2001) discuss the problem of choosing the parameters of the covariance function; Shi and Choi (2011) discuss
Gaussian process regression in models for functional data.

The properties of Kλ(·, ·) are chosen to reflect the assumptions regarding the function γ (·). Suppose that Z is a subset of
the real line. Then we generally assume that the covariance of γ (z) and γ (z̃) is a decreasing function of |z − z̃|; specifically,
take Kλ(z, z̃) = τ 2K̄(|z − z̃|/α)where K̄ is a decreasing, positive definite function on [0,∞)with K̄(0) = 1 and τ and α are
positive parameters, controlling the vertical and horizontal variation of the function, respectively.

The smoothness of a Gaussian process depends on the smoothness of the function K̄ : if K̄ (2m)(0) exists and is finite, then
the process is m-times mean-square differentiable (Ash and Gardner, 1975). One choice for K̄ is the Gaussian covariance
function, K̄(t) = exp(−t2/2), t ≥ 0. Since this function is infinitely-differentiable, the Gaussian process is infinitely-
differentiable in mean-square. For simplicity, here the covariance function of the Gaussian process is always taken to be the
Gaussian covariance function. However, other covariance functions could be usedwithout changing the basic methodology;
see Abrahamsen (1997) and Rasmussen and Williams (2006, Chapter 4) for further discussion.

It is well-known that the Gaussian process approach to nonparametric regression is related to the methods based
on splines. See, e.g., Ruppert et al. (2003), Kimeldorf and Wahba (1970) and Wahba (1990). In the spline approach, the
covariance function is chosen so that the estimate of the unknown function has the desired form.
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