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a b s t r a c t

The mixture approach to clustering requires the user to specify both the number of
components to be fitted to the model and the form of the component distributions. In the
Multimix class of models, the user also has to decide on the correlation structure to be
introduced into themodel. The behaviour of some commonly usedmodel selection criteria
is investigated when using the finite mixture model to cluster data containing mixed
categorical and continuous attributes. The performance of these criteria in selecting both
the number of components in themodel and the form of the correlation structure amongst
the attributes when fitting the Multimix class of models is illustrated using simulated data
and a real medical data set. It is found that criteria based on the integrated classification
likelihood have the best performance in detecting the number of clusters to be fitted to the
model and in selecting the form of the component distributions. The performance of the
Bayesian information criterion in detecting the correct model depends on the partitioning
structure among the attributes while the Akaike information criterion and classification
likelihood criterion perform in a less satisfactory way.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Finite mixture models are widely used in a variety of applications to model the distributions of various events and to
cluster data sets, see for example McLachlan and Peel (2000), McLachlan and Chang (2004), Everitt et al. (2011), Stahl and
Sallis (2012) andMelnykov (2013). This paper focuses on the use of themixturemodel approach to clusteringwhich provides
a formal statistical framework on which the clustering can be based. The procedure gives a probabilistic clustering that
allows for overlapping clusters which correspond to the components in the model, and where each component in the finite
mixture model corresponds to a cluster in the data. The probability that an observation belongs to each of the clusters
can be obtained from the estimates of the posterior probabilities of cluster membership. A definitive partitioning of the
observations into components (clusters) is obtained by assigning each observation to the component to which it has highest
probability of belonging. The finite mixture model requires the specification of both the form of the density function of each
of the underlying components and the number of components to be fitted in the model.
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1.1. Number of components

Prior knowledge concerning the number of components, K , in the mixture reduces the complexity of the analysis.
However there are many situations where there is no a priori knowledge of the number of components to be fitted, and
thus finding the number of components present in the data becomes part of the clustering problem.

An obvious way of approaching this problem is to use the likelihood ratio statistic λ to test for the smallest value of K
compatiblewith the data. Howeverwhen testing for the number of components in amixture, the usual regularity conditions
do not hold for −2 log λ to have its standard asymptotic null distribution of χ2 with the degrees of freedom equal to
the difference between the number of parameters under the full and reduced models. Accounts of the breakdown of the
regularity conditions are given for example, by Hartigan (1977, 1985a,b), Titterington (1981), Titterington et al. (1985),
Ghosh and Sen (1985), McLachlan and Basford (1988), and McLachlan and Peel (2000).

An alternative procedure is to use a bootstrap approach.McLachlan (1987) proposed a resampling procedure that involves
a bootstrapped likelihood ratio test. Bootstrap samples are generated from the finite mixture model fitted under the null
hypothesis of K components, where the parameters of the mixture are the likelihood estimates after fitting a K component
model to the original sample. The value of the likelihood ratio statistic is computed for each of the bootstrap samples
generated after fitting mixtures with K and K ′ components, where K ′ > K . The process is repeated independently B times.
The replicated values of −2 log λ formed from the successive bootstrap samples provide an assessment of the true null
distribution of −2 log λ: see also Feng and McCulloch (1996), and McLachlan and Peel (1997). However, the problem with
bootstrap methods is that they can be computationally intensive when the number of components is large, and little is
known about the performance of the test when the distributional and model assumptions are violated (see Nyland et al.,
2007). See also Lo et al. (2001) for details on another approach called the Lo–Mendell–Rubin likelihood ratio test which uses
an approximation of the distribution of the difference of the two log likelihoods.

The use of information criteria to estimate the number of components of a finitemixture has become increasingly popular
in model based cluster analysis. Information criteria allow the user to quantify the differences between a candidate set of
models and help determine the number of components to be fitted to themixture model. Many criteria have been proposed
with some criteria derived within a Bayesian framework. The authors of this paper have used criteria that are Bayesian
based, information criteria and classification criteria. See for example, McLachlan and Peel (2000, chapter 6), Fraley and
Raftery (2002), Miloslavsky and van der Laan (2003) and McLachlan and Rathnayake (2014) plus the references therein for
discussions on other approaches to the problem of determining the number of components.

The specification of the component distributions is also required in the fitting of a mixture model. There has been
extensive use of mixtures where the component distributions are multivariate normal and there has been much interest in
determining the number of components to be fitted to this model. McLachlan and Ng (2000) report Monte Carlo simulations
to compare the performance of some criteria with that of classical criteria such as the Akaike information criterion (AIC) and
the Bayesian information criterion (BIC), for determining the number of components in mixtures of multivariate normals.

1.2. Covariance structure for models

While it is common to take the component distributions to bemultivariate normal, decisions still need to bemade on the
structure of the components’ covariance matrices. There is the unrestricted case where the component covariances Σk are
unequal, however this may be too general for many situations in practice. Often the component covariances are restricted
to being the same (Σk = Σ for k = 1, . . . , K ), but this can have an adverse effect on the resulting clustering (Chapter 3,
McLachlan and Peel, 2000).

Another way of proceeding is to adopt some model that is intermediate between homoscedasticity and the general
unrestricted heteroscedastic case. Several authors (Banfield and Raftery, 1993; Celeux and Govaert, 1995; Bensmail et al.,
1997) have used the eigenvalue decomposition of the component covariance matrices in Gaussian mixtures to propose
models for clustering. The covariance matrix Σk can be written in the form Σk = λkDkAkD′

k where Dk is the matrix of
eigenvectors of Σk, Ak is a diagonal matrix with the normalized eigenvectors of Σk on the diagonal in decreasing order with
|Ak| = 1, and λk = |Σk|

1
d where d denotes the number of variables. The volume, orientation and shape of the kth component

are determined by λk, Dk and Ak respectively. Celeux and Govaert (1995) and Bensmail and Celeux (1996) consider 14
different models corresponding to different assumptions on the components’ covariance matrices.

Biernacki and Govaert (1999) performed Monte Carlo simulations using two component bivariate Gaussian mixtures
with different covariance matrices to compare the performance of several classical criteria in selecting a relevant and
parsimonious model. The covariance matrices for the component distributions were determined using the 14 models
relating to different assumptions on the component covariance matrix. They performed simulations using small (n = 40)
and larger (n = 200) samples where the components were mixed in both equal and different proportions.

Hunt (1996) and Hunt and Jorgensen (1996, 1999) proposed a set of models that they termed the Multimix class of
mixture models. The Multimix approach uses a form of conditional independence within the components, and can be used
to cluster data containing both categorical and continuous attributes.When using theMultimix approach to clustering, Hunt
(1996) suggested that a form of forward selection of covariates be used for selecting the correlation structure in the model.
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