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a b s t r a c t

In functional data analysis (FDA), variable selection in regression model is an important
issuewhen there aremultiple functional predictors.Most of the existingmethods are based
on least square loss and consequently sensitive to outliers in error. Robust variable selection
procedure is desirable. When functional predictors are considered, both non-data-driven
basis (e.g. B-spline) and data-driven basis (e.g. functional principal component (FPC)) are
commonly used. The data-driven basis is flexible and adaptive, but it raise some difficulties,
since the basis must be estimated from data.

Since least absolute deviation (LAD) loss has been proven robust to the outliers in error,
we propose in this paper a robust variable selectionwith data-driven basis FPC and LAD loss
function. The asymptotic results are established for both fixed and diverging p. Our results
include the existing results as special cases. Simulation results and a real data example
confirm the effectiveness of the proposed method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The past few years has witnessed the rapid development of functional data analysis (FDA) (Ramsay and Silverman, 1997,
2002; Ferraty and Vieu, 2006; Horváth and Kokoszka, 2012; Fan et al., 2015, etc.). Functional linear model, which has been
widely used in the functional data analysis (Ramsay and Silverman, 1997, 2002; Hall andHorowitz, 2007; Cai andHall, 2006),
is defined as follows.

Y = α +


F
β(t)X(t)dt + ϵ, (1)

where X(t) is a functional predictor, α and ϵ are scalars with ϵ being independent of X(t) and F is an interval. The slope
function β(t) is to be estimated. Many results have been published on model (1), where only one functional predictor is
presented (Hall and Hooker, 2014; Comte et al., 2012; García-Portugués et al., 2014; Shang and Cheng, 2015).

In practice, it is often the case that we need to consider the relationship between response Y and multiple functional
predictors Xj(t), 1 ≤ j ≤ p, with more sophisticated relationship beyond linear relationship. Therefore, similar to the
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generalization of linear model to additive model, model (1) can been extended naturally to the functional additive model
(James and Silverman, 2005; Müller and Yao, 2008; Fan et al., 2015). Particularly, when the link functions are identity,
functional additive model becomes the following functional linear additive model

Y =

p
j=1


F
β0j(t)Xj(t)dt + ϵ, (2)

where E(Xj(t)) = 0 and EX2
j (t) < ∞ for all t ∈ F , 1 ≤ j ≤ p, ϵ is a scalar of median 0 and independent of Xj(t)’s. The

sample paths of {Xj(t) : t ∈ F} belong to space L2(F), the set of all square integrable functions defined on F . The functional
coefficients β0j(t), 1 ≤ j ≤ p are to be estimated.

For functional (linear) additive model with p > 1, variable selection is an important but challenging issue. Zhu et al.
(2010) proposed a Bayesian method for the linear additive model in classification problem and Fan et al. (2015) proposed a
method called functional additive regression (FAR) which can select variables when p is much larger than n.

Robustness is an important issue in variable selection. For linear model, it has been shown that the efficiency of variable
selectionmethods, such as LASSO (Tibshiranit, 1996, etc.), can be significantly reduced by outliers (Fan et al., 2014; Zhao et al.,
2013). And many robust variable selection methods, based on LAD-loss or quantile regression, etc., have been developed
(e.g. Wang et al., 2007; Belloni et al., 2011; Li and Zhu, 2008; Fan et al., 2014, etc.). However, in the framework of FDA,
robustness is less considered in variable selection for regression models. Most of the existing works, based on least square
loss function, are sensitive to the outliers in error or heavy-tailed error (e.g. Lian, 2013; Fan et al., 2015; Chen et al., 2011, etc.).
In this paper, we attempt to develop variable selection method that is insensitive to outliers in error or heavy tailed error ϵ.

However, different from linear model, functional data is nonparametric in nature. A commonly used strategy in FDA is
to expand the functional data with respect to certain basis, similar to nonparametric or semiparametric statistics. In the
literature, both non-data-driven and data-driven approaches are commonly used. The former one includes B-spline or other
given orthogonal basis, (see Li and Hsing, 2007, Cardot et al., 2005, Lian and Li, 2014), while the latter one includes functional
principal component (FPC) basis, which is a popular tool in FDA, see Cai andHall (2006); Hall andHorowitz (2007) for details.

The FAR method of Fan et al. (2015) can do variable selection for the case p being much larger than n in functional linear
additive model (2). However, their method, based on a set of non-data-driven bases, denoted as {bl(t), l = 1, 2 . . . , }, needs
restrictive assumptions. Let Xij(t), 1 ≤ i ≤ n be the i.i.d. observations of Xj(t) for 1 ≤ j ≤ p. A key assumption for FAR
is that all elements in {Xij(t), βj(t), 1 ≤ i ≤ n, 1 ≤ j ≤ p}, are uniformly well approximated by first qn = o(n) basis
{b1(t), . . . , bqn(t)} (see (A) in Condition 1 of Fan et al. (2015)), such that the approximation error is simultaneously small
and neglectable. Note that the same set of bases is used for all 1 ≤ j ≤ p. This assumption may be mild when p is fixed, but
it is quite strong for large p, especially when p is diverging. In addition, the selection of such basis {bl(t), l = 1, 2, . . . , } in
practice is not easy.

On the other hand, data-driven basis seems more flexible and adaptive, which enables us to approximate
{Xij(t), βj(t), 1 ≤ i ≤ n} with different basis {b̂jl(t), l = 1, 2, . . . , } for different j, where b̂jl(t)’s are estimated from data.
However, additional challenges raise for data-driven basis. Since the bases {b̂jl(t), l = 1, 2 · · ·}, 1 ≤ j ≤ p, are estimated
fromdata,weneed them to be uniformly close to its population version to guarantee the consistency. Thiswill be challenging
when p is diverging. FPC is a popular data-driven basis in functional data analysis, since one can know the loss in variance
information for truncated number of FPCs (Hall and Horowitz, 2007).

FPC basis may have some advantages in variable selection compared with non-data-driven basis. For any given
orthonormal basis {mjk(t), k = 1, 2, . . . , }, where 1 ≤ j ≤ p, we have Xj(t) =


∞

k=1 ηjkmjk(t) and β0j(t) =


∞

k=1 bjkmjk(t),
where ηjk’s and bjk’s are the coefficients. Consequently, the functional linear additive model becomes linear model Y =p

j=1


∞

k=1 ηjkbjk + ϵ, where bjk’s are unknown parameters to be estimated. To estimate the coefficients, we truncate the

summands, keeping only the first Lj terms for each 1 ≤ j ≤ p, which results in the model Y =
p

j=1
Lj

k=1 ηjkbjk + ϵ̃, where
ϵ̃ =

p
j=1


k>Lj
ηjkbjk + ϵ being the error. Then after truncation, we have the approximation error (


k>Lj

b2jk)
1/2 with

respect to nonzero β0j(t). Moreover, truncation increases the noise level of the error, since ϵ is independent of Xj(t)’s. Large
Lj’s will reduce the approximation error and the noise level of ϵ̃, which is helpful in improving the efficiency of the estimate.
However, large Lj’s also have side effect in view of variable selection. Since we aim to select Xj(t), 1 ≤ j ≤ p, the coefficients
{bjk, k = 1, 2, . . . , Lj} should be treated as a group in the penalty term. It is known from the literature of group lasso for
linear model that convergence rate of the estimators {b̂jk, 1 ≤ k ≤ Lj, 1 ≤ j ≤ p} towards {bjk, 1 ≤ k ≤ Lj, 1 ≤ j ≤ p}
is affected significantly by the largest group size max1≤j≤p Lj, e.g. the convergence rate in ℓ2 norm being of the order
max1≤j≤p Lj/n +

√
log p/n (e.g. Negahban et al., 2012). Therefore, it is important to keep good balance on group size,

the noise level of ϵ̃ and the approximation error.
FPC basis may have some merits in this setting. For simplicity of illustration, we take {mjk(t), l = 1, 2 · · · , 1 ≤ j ≤ p} to

be the population version of the FPC. If both β0j(t)’s and total variances can be approximated well by the first few FPCs, then
noise level, group size and approximation error will be well controlled simultaneously. And it can be expected that FPC basis
will have good performance in variable selection. In the case where the first few FPCs (or equivalently Lj’s are small) still
approximate total variancewell and its approximation to nonzeroβ0j is not very bad (or equivalently vector (bjk, 1 ≤ k ≤ Lj)
is not very close to zero), we see that noise level is still controlled under some mild conditions of ∥β0j∥. Moreover, for any
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