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a b s t r a c t

Classical finite mixture regression is useful for modeling the relationship between scalar
predictors and scalar responses arising from subpopulations defined by the differing as-
sociations between those predictors and responses. The classical finite mixture regression
model is extended to incorporate functional predictors by taking awavelet-based approach
in which both the functional predictors and the component-specific coefficient functions
are represented in terms of an appropriate wavelet basis. By using the wavelet represen-
tation of the model, the coefficients corresponding to the functional covariates become
the predictors. In this setting, there are typically many more predictors than observations.
Hence a lasso-type penalization is employed to simultaneously perform feature selection
and estimation. Specification of the model is discussed and a fitting algorithm is provided.
The wavelet-based approach is evaluated on synthetic data as well as applied to a real data
set from a study of the relationship between cognitive ability and diffusion tensor imaging
measures in subjects with multiple sclerosis.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let Yi ∈ R be the scalar response of interest for observation i, i = 1, . . . , n and let Xi be a random predictor process that
is square integrable on a compact support I ⊂ R (i.e.,


I X

2
i (t)dt < ∞). It is increasingly common to model the relationship

between Yi and Xi via a functional linear model (FLM) given by:

Yi = α +


I
Xi(t)ω(t)dt + εi, i = 1, . . . , n, (1.1)

where α is the scalar intercept and εi is the error term such that εi ∼ N(0, σ 2). ω is a square integrable coefficient function
that relates the predictor process to the response. The magnitude of ω(t) indicates the relative importance of the predictor
Xi at a given value of t . If |ω(t0)| is large, thismeans that changes in the predictor process at t0 are important in predicting the
response. A variety of approaches have been developed for estimating the coefficient function in (1.1) (James, 2002; Cardot
et al., 2003; Cardot and Sarda, 2005; Ramsay and Silverman, 2005; James and Silverman, 2005; Cai and Hall, 2006; Reiss and
Ogden, 2007; Müller and Yao, 2008; Zhao et al., 2012).

✩ Supplementary materials, including R code for implementing the proposed method and conducting analyses, as well as additional simulation results
can be found in the electronic version of this paper (see Appendix A).
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Although (1.1) is adequate for modeling the relationship between a scalar response and a functional predictor when the
association between the response and predictor is the same for all observations, it is not appropriate for settings in which
the coefficient function differs across subgroups of the observations. If there are C different associations corresponding
to C different coefficient functions, then we can think of each observation as coming from one of C distinct subpopula-
tions/components and would need C distinct FLMs to adequately describe the relationship between the response and the
predictor. We are concerned with settings in which subpopulation membership is not observed and will need to be esti-
mated along with the component-specific coefficient functions. In order to appropriately model the relationship between
Xi and Yi in this context, we combine finite mixture and functional linear modeling strategies.

Although the underlying theory of finite mixture regression models andmethods for estimating those models have been
well-studied when the predictors are scalars (McLachlan and Peel, 2000; Schlattmann, 2009), methods for finite mixture
regression remain relatively undeveloped when the predictors are functions. To our knowledge, Yao et al. (2011) are the
only ones to investigate such an extension. In their approach to functional mixture regression (FMR) models, they first
represent each functional predictor in terms of some suitably chosen number of functional principal components and apply
standard mixture regression techniques in the new coordinate space.

The FMR model is given by

Yi = αr +


I
Xi(t)ωr(t)dt + εi if subject i belongs to the rth group, (1.2)

where C is the number of components or distinct subpopulations, αr is the rth component-specific intercept, and ωr is the
regression function for the rth group, r = 1, . . . , C .

In contrast to Yao et al. (2011), we propose to take a wavelet-based approach to FMR models. Our approach is distinct
from that of Yao et al. (2011) in several ways. First, just as with using functional principal components, using a wavelet basis
initially provides no dimension reduction. However, wavelets are useful for providing sparse representations of functions so
that most of the information about the function is contained in relatively few wavelet coefficients. The method that we use
to achieve dimension reduction relies on this sparsity property and is very different from simply choosing a small number
of principal components that explain some specified proportion of the variance in the predictors. We take a fully functional
approach which performs dimension reduction andmodel estimation simultaneously so that dimension reduction is driven
by the relationship between the functional predictor and the response of interest. This is not the case with the functional
principal components-based approach. Furthermore, the approach that we present here is flexible in that we can choose
from a host of wavelet families to represent the functional predictors and component coefficient functions. Our approach
comes with the added cost of needing to select more tuning parameters, but we propose methods for tuning parameter
selection that perform well in simulations and we show that we can make substantial gains in estimation accuracy over
using functional principal components when the true component coefficient functions are characterized by local features.
Finally, it is computationally trivial to extend our approach to higher-dimensional predictors such as 2- or 3-dimensional
images. This is due to the fact that there are several software packages available for performing wavelet decompositions for
2- or 3-dimensional data. To our knowledge, there is no readily available software for performing FPCA for such data.

The rest of the paper is organized as follows. In Section 2, we provide a brief discussion ofwavelets and thewavelet-based
functional linear model followed by specification of the wavelet-based (WB) functional finite mixture regression model. In
Section 3, we outline an algorithm for fitting the WB model. Section 4 discusses the various tuning parameters in the WB
model. Section 5 presents simulation results showing the performance of theWBmethod and an application of our method
to a real data set. We conclude with a brief discussion in Section 6.

2. Methodology

2.1. Wavelets, wavelet decomposition, and wavelet representation of the FLM

We focus here on the wavelet basis for several reasons. Wavelets are particularly well suited to handle many types of
functional data, especially functional data that contain features on multiple scales. They have the ability to adequately rep-
resent global and local attributes of functions and can handle discontinuities and rapid changes. Furthermore a large class
of functions can be well represented by a wavelet expansion with relatively few non-zero coefficients. This is a desirable
property from a computational point of view as it aids in achieving the goal of dimension reduction.

In L2(R), a wavelet basis is generated by two kinds of functions: a father wavelet, φ(t), and amother wavelet,ψ(t), satis-
fying


φ(t)dt = 1 and


ψ(t)dt = 0. Here we restrict ourselves to orthonormal wavelet basis families (Daubechies, 1988).

Any particular wavelet basis consists of translated and dilated versions of its father and mother wavelets given by
φj,k(t) = 2j/2φ(2jt − k) and ψj,k(t) = 2j/2ψ(2jt − k)where the integer j is the dilation index referring to the scale and k is
an integer that serves as a translation index. These functions can be adapted via implementation of one of several boundary
handling schemes that represent a given function on a specified interval. Without loss of generality, we take that interval to
be [0, 1]. Hence if we assume that ω ∈ L2([0, 1]) then we can represent ω in the wavelet domain by

ω(t) =

2j0−1
k=0

β ′

j0,kφj0,k(t)+

∞
j=j0

2j−1
k=0

βj,kψj,k(t), (2.1)
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