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a b s t r a c t

Modelling heterogeneity in large datasets of counts under the presence of covariates
demands advanced clustering methods. Towards this direction a mixture of Poisson
regressions is proposed. Conditionally on the covariates and a cluster, the multivariate
distribution is a product of independent Poisson distributions. A variety of different
parameterizations is taken into account for the slope of the conditional log-means. Also
considered is the case of partitioning the response variables into sets of replicates sharing
the same conditional log-mean up to an additive constant.Model parameters are estimated
via an Expectation–Maximization algorithm with Newton–Raphson steps. In particular,
an efficient initialization is introduced in order to improve the inference: a splitting
scheme is combined with a Small-EM strategy. Simulations and application on two real
high-throughput sequencing datasets highlight improvements of parameter estimations.
The proposed methodology is implemented in the R package poisson.glm.mix,
available on CRAN.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Finite mixture models are a powerful tool for approximating unknown distribution functions in a semiparametric way,
as well as to account for unobserved heterogeneity. In past decades both frequentist and Bayesian approaches to estimate
a mixture model have become feasible due to the available computing power. From a frequentist point of view, the
Expectation–Maximization (EM) algorithm (Dempster et al., 1977) is the most standard approach (see McLachlan and Peel,
2000). Mixture estimation within a Bayesian framework has become popular with advent of Markov Chain Monte Carlo
methods, an overview is given in Frühwirth-Schnatter (2006).

An obvious extension of standard mixtures is to include covariates. When observations are counts, it leads to estimate a
generalized linear model (Nelder and Wedderburn, 1972) for each component. Mixtures of Poisson regressions have been
applied in quality control, as well as in biology and medicine. Aitkin (1996) fitted these models in order to describe the
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number of faults in a bolt of fabric in terms of its length, while in a medical context, Wang et al. (1996) presented two
examples (seizure frequency and Ames salmonella assay data) with covariate dependent rates. To describe count data with
an excess of zeros (see for example Lambert, 1992; Cui and Yang, 2009), zero-inflated Poisson mixture models (with or
without covariates) are often devised.

To the best of our knowledge, applications of mixtures of Poisson regressions are usually done on datasets with a
reasonable size and a small number of components are usually required to fit well the data. However, a new field of
application of such models emerges with technologies of high-throughput sequencing of RNA (RNA-seq) in molecular
biology. These technologies allow one to sequence transcripts of genes, followed by a bioinformatic analysis resulting in
a sequence of counts per gene. The complex nature of these biological datasets (high-dimensional, highly skewed with
dynamic range from zero to 105) combined with the genuine multimodality of mixture log-likelihoods impose certain new
inferential difficulties. Leisch (2004) and Grün and Leisch (2008b) have developed the R package flexmix to fit a variety of
mixture models but it does not seem to be designed to take the aforementioned complexities into account (see Section 4 in
the Supplementary material).

Initialization and ability of the EM algorithm to recover the overall mode of the log-likelihood remains a challenging
task. The contribution of this paper is to efficiently estimate mixtures of Poisson regressions when the dataset is sizeable
and the number of components could be greater than 10. To overcome such difficulties, an adaptive initialization scheme
is proposed: starting from a mixture with a small number of components, the EM algorithm with a Small-EM strategy
(Biernacki et al., 2003) is performed to estimate the parameters. Then a mixture with an additional component is estimated
by an EM algorithm which exploits information provided by the previous mixture by using a splitting scheme combined
with a Small-EM strategy. It is demonstrated by simulations that this estimation procedure avoids local maxima and leads
to efficient estimation of parameters of mixtures of Poisson regressions with a large number of components.

The rest of the paper is organized as follows. The proposedmixture model is introduced in Section 2. Section 3 is devoted
to parameter estimation. The EM algorithm, along with two initialization schemes is discussed. The proposed method
is illustrated in Section 4 using a set of simulation studies and one RNA-seq dataset. The paper concludes with a brief
discussion in Section 5. Several details of the initialization schemes, analyses of additional synthetic and real datasets aswell
as some technical aspects about themaximization step of the EM algorithm are provided in the Supplementarymaterial (see
Appendix A).

2. Model parameterization

Let y = (y1, . . . , yn) denote n independent observations, where yi = {yijℓ; j = 1, . . . , J, ℓ = 1, . . . , Lj}, yi ∈ Nd, i =
1, . . . , n, with d =

J
j=1 Lj and Lj ≥ 1, j = 1, . . . , J . In the RNA-seq analysis framework, an observation corresponds to

a gene and yijℓ is a count which measures the expression of gene i in replicate ℓ of condition j. Lj denotes the number of
replicates of the jth condition, and the partition of the d variables among the J conditions is determined by the experimental
design. In addition to y, consider that a vector of V covariates is observed, denoted by xi := {xiv; v = 1, . . . , V }, xi ∈ RV , for
all i = 1, . . . , n. We assume that xTx is a full rank matrix.

Given a model indicator m taking values in a discrete set and a positive integer K , the distribution of the response yi,
conditionally on xi, is a mixture of K distributions, that is,

yi|xi,m, K ∼
K

k=1

πk

J
j=1

Lj
ℓ=1

P (µijℓk;m),

where P denotes the Poisson distribution. Moreover, {yijℓ; j = 1, . . . , J, ℓ = 1, . . . , Lj} are assumed to be independent
conditionally on the mixture component. The vector π := (π1, . . . , πK ), πk > 0, k = 1, . . . , K ,

K
k=1 πk = 1 contains the

weight of each cluster. Indexm ∈ {1, 2, 3} defines a series of parameterizations for the Poisson means µijℓk;m:

m = 1⇒ ln(µijℓk;1) = αjk + γjℓ +

V
v=1

βjkvxiv (1)

m = 2⇒ ln(µijℓk;2) = αjk + γjℓ +

V
v=1

βjvxiv (2)

m = 3⇒ ln(µijℓk;3) = αjk + γjℓ +

V
v=1

βkvxiv, (3)

for i = 1, . . . , n, j = 1, . . . , J, ℓ = 1, . . . , Lj and k = 1, . . . , K . Parameterizations (2) and (3) are special cases of (1). If J = 1
then Parameterizations (1) and (3) coincide. Finally, for identifiability purposes, we assume for all j = 1, . . . , J

Lj
ℓ=1

γjℓ = 0. (4)
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