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a b s t r a c t

Modeling time series that present non-Gaussian features plays as central role in many
fields, including finance, seismology, psychological, and life course studies. The Hidden
Mixture Transition Distribution model is an answer to the complexity of such series. The
observed heterogeneity can be induced by one or several latent factors, and each level of
these factors is related to a different component of the observed process. The time series
is then treated as a mixture and the relation between the components is governed by a
Markovian latent transition process. This framework generalizes several specifications that
appear separately in related literature. Both the expectation and the standard deviation of
each component are allowed to be functions of the past of the process. The latent process
can be of any order, and can be modeled using a discrete Mixture Transition Distribution.
The effects of covariates at the visible and hidden levels are also investigated. One of the
main difficulties lies in correctly specifying the structure of the model. Therefore, we pro-
pose a hierarchical model selection procedure that exploits the multilevel structure of our
approach. Finally, we illustrate themodel and themodel selection procedure through a real
application in social science.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Real data are often a combination of many different, possibly non-observed causes that lead to apparently unpredictable
behaviors. For example, in the context of longitudinal data, time series may show non-homogeneous behaviors, can switch
between alternative regimes characterized by a low or high variance, can contain extreme values, and the distribution of
future values can take complex multimodal shapes.

The Hidden Mixture Transition Distribution (HMTD) model considered in this study is a general framework to study
time series. The model can be used to describe and analyze the evolution of any continuous variable observed on a set ofM
independent sequences that can also vary in length. Themodel integrates several refinements of the mixture model and the
hiddenMarkovmodel. More specifically, it can be used for different purposes, including describing observed data, searching
for a generalizable model, testing hypotheses, prediction, and classifying time series.

Mixturemodels are a popular and efficient approach, both for cross-sectional data and time series, to describemultimodal
distributions that do not correspond to any specific statistical family. Related literature provides many examples of the
usefulness of suchmodels since thework ofWeldon and Pearson at the end of the 19th century. Historically, mixturemodels
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for continuous-valued time serieswere introduced in Le et al. (1996) as theGaussianMixture TransitionDistribution (GMTD)
model, building upon the earlier work of Raftery (1985) in the discrete case. See Berchtold and Raftery (2002) for a complete
review of the basic principles of Mixture Transition Distribution (MTD)models. The general principle of all MTD-likemodels
for count data is to combine different Gaussian distributions (called components) using a mixture model in which the mean
of each distribution is a function of the past observed process. The weights associated to each component are interpreted as
the probability of that specific component generating the next value of the process. This class of models has been expanded
on in several ways. For example, allowing detailed specifications for the mean of each component (e.g., Wong and Li, 2001),
allowing the variance of each component to depend on its past (Wong and Li, 2001; Berchtold, 2003), and replacing the fixed
probabilities associated with each component by a Markov chain (Bartolucci and Farcomeni, 2010). Then, covariates have
been included (Chariatte et al., 2008; Luo and Qiu, 2009) used non-Gaussian distributions, and extensions to bivariate data
have been suggested (Hassan and Lii, 2006; Hassan and El-Bassiouni, 2013).

Hidden Markov Models (HMMs) form another class of stochastic processes often used to represent and analyze complex
time series in the presence of over-dispersion. They are particularly well suited to analyzing data switching between several
regimes. In its traditional formulation, a HMM combines a hidden first-order Markov chain with different conditionally
independent distributions for the observed process. Here each distribution is related to one of the states of the Hidden
Markov chain. Many developments to the basic HMM have been proposed, including using high-order Markov chains and
removing the conditional independence hypothesis. The latter change allows the observed process to depend on both its
past and the hidden process (Wellekens, 1987; Berchtold, 1999, 2002). Under the hypothesis of stationarity, the marginal
distribution of the observations in a HMM is a finite mixture, with the number of components being equal to the number of
states in the unobserved Markov process. Therefore, we may consider the two models as one unique approach. When the
transitions between components are driven by a Markov chain, the mixture transition model becomes a HMM. In addition,
when the observations are allowed to follow an autoregressive process, theHMMbecomes amixture transitionmodel. Some
authors even refer to HMMs as Markov-dependent mixture models (as coined by Leroux, 1992).

It is worth noting that mixture transition and Markovian models are distributional stochastic models, in contrast to
other well-known and widespread approaches that are essentially point processes. The latter group includes the ARMA and
ARIMA models, which are based on autoregressive equations, and the ARCH and GARCH models, which explicitly consider
the variance of the process. See, for example, Box et al. (1994), Hamilton (1994), and Bollerslev et al. (1992) for a complete
review of these models, and Kon (1984) and Kim and Kon (1994) for a comparison of the different models. When trying
to predict the next value of a series, the advantage of the point approach is that the model will provide a clear answer as
one numerical value (associated with a confidence interval). However, the drawback is that, in most cases, the answer is
either inaccurate or completely wrong. Given the high variability of many time series, the expectation of the model is not a
good estimator of the value of the next observation. Even when modeling the variance of the process, there is only a small
probability of accurately predicting the next value. However, in the probabilistic approach, instead of trying to determine
the next value of the series, a non-null probability is associated with values (discrete case) or intervals (continuous case),
which are then possible candidates to be the next data. Then, an adequate probabilistic model does not provide a single
value, but rather leads to a complete representation of possible futures through a (possibly multimodal) distribution. In that
sense, the answer given by this approach generally has a higher probability of helping to make the right decisions, because
it shows all possibilities rather than one (probably) wrong value.

Hidden Markov models were historically used for speech recognition (Rabiner, 1989; Baum and Petrie, 1966), but many
applications have since been found in other fields, including econometrics (e.g., Elliott et al., 1998; Hayashi, 2004; Netzer
et al., 2008) and the biosciences (e.g., Le Strat and Carrat, 1999; Shirley et al., 2010). Mixture models for count data are
also quite common in finance and biomedical studies (Sclattmann, 2009) and behavioral studies (under the name of growth
mixturemodeling, e.g., Muthen, 2001). However, Mixture TransitionModels seem to be used quite exclusively in economics
and finance (e.g., Wong and Chan, 2005; Frydman and Schuermann, 2008). In fact, despite their unanimously recognized
advantages, mixture transition and hidden models are still only sparsely used in social sciences. This is unfortunate, since
the current trend in this field is clearly to switch from cross-sectional to longitudinal surveys, hence the need for advanced
methods for modeling longitudinal data showing non-Gaussian distributions.

In addition, even though many developments have been proposed during the past few decades on the basic MTD and
HMMmodels, there is still a need for amore general framework that integrates these refinements. As a result, this study has
three objectives. First, we define a general framework that integrates the many extensions presented previously separately
in the literature (see Section 2), and then we discuss the estimation procedure (see Section 3). Second, as noted by Rabiner
(1989), the number of possibilities offered by hidden models is so large that it becomes difficult to identify an adequate
model structure for a particular research question. Therefore, in Section 4, we outline a search strategy similar to that used
with other multilevel models. Finally, we illustrate the model and the proposed procedure using a real dataset, the US Panel
Study of Income Dynamics (see Section 5).

2. The HMTDmodel

The Hidden Mixture Transition Distribution (HMTD) model developed in this paper combines a hidden and an observed
level. It can be used to describe and analyze the evolution of any continuous variable observed on a set of M independent
sequences, which may vary in length.
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