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a b s t r a c t

The performances of fit indices used for model selection in cross-sectional mixture
modeling with nonnormally distributed indicators were examined in two studies using
Monte Carlo methods. Simulation conditions were selected to mirror conditions found
in educational and psychological research. The design factors under investigation were:
indicator distribution, number of indicators, sample size, and profile prevalence. All
models contained five, ten, or 15 continuous indicators with varying departures from
normality. The fit indices examined were Akaike’s information criterion (AIC), corrected
Akaike’s information criterion (AICc), consistent Akaike’s information criterion (CAIC),
Bayesian information criterion (BIC), sample size-adjusted Bayesian information criterion
(SSBIC), Draper’s information criterion (DIC), integrated classification likelihood criterion
with Bayesian-type approximation (ICL), entropy, and the adjusted Lo–Mendell–Rubin
likelihood ratio test (LMR). In the first study, nonnormally distributed data were used to
estimate the mixture models. No fit index uniformly identified the simulated number of
profiles using nonnormal indicators. The fit indices that tended to identify the simulated
number of profiles more frequently than others were BIC, SSBIC, CAIC, and LMR although
the condition(s) in which this was observed varied. In the second study, the raw data were
transformed using van derWaerden quantile normal scores. Despite deflating the indicator
variances, the use of normal scores increased the frequencywithwhich fit indices identified
the simulated number of profiles across most conditions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Classification procedures have been used for decades by researchers interested in classifying individual cases of a hetero-
geneous dataset into homogeneous groups. During this time, classification methods have been applied in many disciplines,
such as business, education, medicine, and the social sciences. Generally, classification refers to the process of dividing
a large, heterogeneous set of observations into smaller, homogeneous groups with smaller within-group variability and
greater between-group variability (Clogg, 1995; Gordon, 1981; Heinen, 1996; Muthén and Muthén, 2000). The primary
challenge facing researchers is that the frequency and form of the groups underlying a complex dataset is rarely known in
advance. The frequency of the groups refers to the number and size of each group, and the form refers to the group-specific
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means, proportions, variances, and/or covariances. Both distance- andmodel-based classification approaches have been ap-
plied by researchers in their efforts to meaningfully structure the individual cases because the purpose of both approaches
is to correctly classify similar cases into one of K subgroups.

Mixture modeling generally refers to a model-based approach that is often used to identify underlying subgroups (may
also be referred to as classes or profiles depending on the analysis) whose members tend to have more similar values on
the manifest variables than with members of other subgroups. The purpose of mixture modeling is often the same as other,
distance-based clustering methods, but mixture models treats the underlying class variable as a categorical latent variable.
As such, class membership must be measured indirectly using two or more observed, or indicator, variables, which are
subject to measurement error.

There are a number of major benefits of mixture methods over distance-based clustering methods. First, mixture models
can easily accommodates variables measured on different scales (i.e., mixed metric data). Morgan (2015) showed using
Monte Carlo methods that statistical fit indices were effective under many conditions at recovering the true number
of classes using a combination of dichotomous and continuous class indicators. Second, mixture modeling approaches
recognize that there may be some uncertainty associated with the classification of each case. That is, each vector of
observations, yi, is assigned to group k based on the estimated posterior probability (p̂ik). Letting Φ̂ represent the maximum
likelihood estimates of the mixture of profile-specific joint distributions of indicators covariance matrices, π̂k represent
the estimated profile prevalence, and θ̂k represent the profile-specific means, variances, and covariances, the posterior
probabilities can be defined as:

p̂ik = Pr(individual i ∈ group k|yi; Φ̂) =
π̂kfk(yi|θ̂k)

K
k=1

π̂kfk(yi|θ̂k)

, (1)

for k = 1, . . . , K . Next, yi is assigned to group k if

π̂ik > π̂ik′ , (2)

for k = 1, . . . , K , where k ≠ k′ (Hunt and Jorgensen, 2003).
The thirdmajor benefit of mixturemodeling is the flexibility it offers for model estimation. The researcher has the option

to freely estimate or constrain any of the model parameters though most restrictions are concerned with elements of the
covariance matrix (Vermunt, 2004). A fourth benefit is the availability of indices of model-data fit. A number of studies have
investigated fit index performance, but the conditions studied to this pointmay not generalize to some of the conditions that
some researchers are likely to encounter. Thus, model selection through statistical criteria can be viewed as an unresolved
issue in mixture modeling. There are many fit indices available in mixture modeling, and each fit index provides slightly
different information regarding the model-data fit. The fit indices examined are discussed below.

Procedures that may be included under a mixture modeling umbrella include mixture likelihood approach to clustering
(McLachlan and Basford, 1988; Everitt, 1993), model-based clustering (Banfield and Raftery, 1993), finite mixture modeling
(McLachlan and Peel, 2000), and latent variablemixturemodeling (Henson et al., 2007; Bartolucci et al., 2013).More recently,
Bauer and Curran (2004) presented structural equationmixture modeling as integrative framework that may accommodate
both categorical and continuous latent variable models. Mixture analysis based on categorical indicators are commonly
referred to as latent class analysis, and analysis that employs continuous indicators is commonly referred to as latent profile
analysis.

Bauer and Curran (2004) provided an excellent discussion of relationships between popular latent variable models that
primarily rely on categorical and/or continuous data. For example, they noted the analytic similarity of latent profile models
and common factor models for the first and second order moments with regard to the decomposition of the covariance
matrix. They also provided a conceptual and analytic comparison between finite normalmixturemodeling and latent profile
models. Under finite normal mixture modeling, the within-group distributions of mixture indicators are assumed to be
normally distributed. Under latent profile models, the indicators need not be normally distributed, but the model assumes
that indicators are locally independent for theoretical reasons. Conceptually, the latent variable in finite normal mixture
models is a moderator whereas it is an explanatory variable in latent profile models.

Many simulation-based investigations of mixture model selection are based on within-group normality (Dolan and van
der Maas, 1998; Everitt, 1981; Lo et al., 2001; Lubke and Neale, 2006; McLachlan and Peel, 2000; Morgan, 2015; Nylund
et al., 2007). As an initial investigation, we chose to focus on the extent to which the true number of underlying profiles
that were nonnormally distributed could be recovered using latent profile analysis. Then, building on the ideas explored in
Milligan and Cooper (1988), we examined the potential impact standardization of indicators would have onmodel selection
aided by fit indices.

1.1. Model selection using fit indices

In general, mixture model fit indices reflect absolute model fit, relative fit, classification certainty, and validation (Collins
and Lanza, 2010). The likelihood index (L) serves as the primary basis for model selection in mixture modeling (McLachlan
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