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a b s t r a c t

Mixture of Linear Experts (MoLE) models provide a popular framework for modeling
nonlinear regression data. The majority of applications of MoLE models utilizes a Gaussian
distribution for regression error. Such assumptions are known to be sensitive to outliers.
The use of a Laplace distributed error is investigated. This model is named the Laplace
MoLE (LMoLE). Links are drawn between the Laplace error model and the least absolute
deviations regression criterion, which is known to be robust among a wide class of
criteria. Through application of the minorization–maximization algorithm framework, an
algorithm is derived that monotonically increases the likelihood in the estimation of the
LMoLEmodel parameters. It is proven that themaximum likelihood estimator (MLE) for the
parameter vector of the LMoLE is consistent. Through simulation studies, the robustness
of the LMoLE model over the Gaussian MOLE model is demonstrated, and support for the
consistency of the MLE is provided. An application of the LMoLE model to the analysis of a
climate science data set is described.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Mixture of experts (MoE) models were first introduced in Jacobs et al. (1991) as a model for nonlinear regression
relationships; see Jordan and Jacobs (1994) and Section 5.12 of McLachlan and Peel (2000) for details. Since their inception,
the development inMoE research has been rich, and the framework has been successfully applied to problems of clustering,
classification, and regression in a variety of fields. A review of the current state of the art can be found in Yuksel et al. (2012).
The MoE framework can be defined as follows.

Let Z ∈ {1, . . . , g} be a categorical random variable such that

P (Z = i|v) =
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= πi (v; α) , (1)
for some covariate v ∈ Rp, and let Y ∈ R be a random variable such that Y |Z = i (for i = 1, . . . , g) has density function
fi (y|x), which we refer to as the component density, for some covariate x ∈ Rq. Here, T denotes matrix transposition and
α =
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If one observes Y without observing Z (i.e. Z is a latent variable), then the density function of Y |v, x can be written as

fY (y|v, x) =

g
i=1

πi (v; α) fi (y|x) . (2)

Density functions of form (2) are known as MoE models. In this article, we concentrate on the case when Y ∈ R and
E (Y |Z = i, x) = βT

i x, where βi ∈ Rq. We shall refer to such densities as mixture of linear experts (MoLE) models.
MoLE models have recently received strong interest from the computational statistics and neural computation

communities. For example, Wedel (2002) and Grun and Leisch (2008) considered MoLE densities for modeling concomitant
variables; Ingrassia et al. (2012) showed it to be related to cluster-weighted modeling; and Chamroukhi et al. (2009, 2010),
and Same et al. (2011) applied it to fit, classify, and cluster time-series data, respectively.

Although a rich class, the current research in MoLE models has been restrictive in the sense that fi (y|x) is always
considered to be Gaussian (i.e. fi (y|x) = φ


y; βT

i x, σ
2
i


, where φ


y; µ, σ 2


is the Gaussian density function with mean

µ ∈ R, and variance σ 2
∈ (0, ∞)). We will call this model the Gaussian MoLE (GMoLE).

When misapplied, the Gaussian assumption is known to incur problems in mixture models (e.g. misspecification error,
and outlier sensitivity; see p. 221 of McLachlan and Peel (2000) for a brief discussion), which can often lead to incorrect
inference making. As a remedy to these problems, the mixture model literature has extended in scope to using robust
generalizations of the Gaussian densities as component functions (e.g. Lee and McLachlan (2013) recently reviewed a
variety of skewed-generalizations of Gaussian mixture models). Outside of Gaussian generalizations, Jones and McLachlan
(1990) have considered Laplace distribution components for modeling data that departs from the Gaussian assumption
and Franczak et al. (2014) have considered mixtures of asymmetric Laplace distributions for density estimation.

In the mixtures of linear regression context, Galimberti and Soffritti (2014), Ingrassia et al. (2014), and Yao et al. (2014)
have suggested the use of the t-distribution as an error model in various settings; and Song et al. (2014) have considered
the use of Laplace distributed errors. When g ≥ 2, the density function for the Laplace mixture from Song et al. (2014) can
be expressed in the form of (2) by taking v = 1, and setting fi (y|x) = λ


y; βT

i x, ξi

, where

λ (y; µ, s) =
exp (− |y − µ| /ξ)

2ξ
, (3)

is the Laplace density function withmeanµ ∈ R and scale parameter ξ ∈ (0, ∞). Unlike MoLEmodels, the aforementioned
mixtures of linear regression models do not allow for covariate dependencies in the component probabilities.

Considering the state of current research in MoLE models (with respect to distributional assumptions), we believe that
an extension of the Laplace mixture to the more general MoLE setting (i.e. model (2) with fi (y|x) = λ


y; βT

i x, ξ

) is timely

and pertinent. We name our newmodel the Laplace MoLE (LMoLE). The following considerations regarding the model shall
be discussed in this article.

Firstly, we will discuss maximum likelihood estimation (MLE) for the LMoLE model parameters. Like other MoE models,
MLE for LMoLE models cannot be conducted in closed form; as such, an iterative numerical scheme is required for MLE. Un-
like previous works (e.g. Jordan and Jacobs (1994) and Grun and Leisch (2008)), we do not use an expectation–maximization
(EM) algorithm for the task; see McLachlan and Krishnan (2008) for a treatment on EM algorithms. This is because EM al-
gorithms require specialist knowledge of probabilistic characterizations in order to express the iterative updates (e.g. Song
et al. (2014) required a Gaussian scale mixture representation to express their updates). Furthermore, to the best of our
knowledge, all current EM algorithms for MLE of MoE model parameters require a Newton or quasi-Newton update step
(e.g. Jordan and Jacobs (1994) and Grun and Leisch (2008), respectively), which can violate the usual monotonicity property
of EM algorithms.

Instead of an EM algorithm, we suggest a monotonic iterative scheme using the minorization–maximization (MM)
algorithm framework; see Hunter and Lange (2004) for a concise introduction to MM algorithms. The MM algorithms are
attractive due to their use of analytic inequalities, rather than probabilistic characterizations, in order to construct iterative
schemes.

We then show the relationship between LMoLE and least absolute deviations (LAD) regression; treatments on LAD and
related regression methods can be found in Maronna et al. (2006) and Section 2.3 of Amemiya (1985). Such a relationship
indicates that LMoLE models should be more robust than GMoLE models, in the sense of Huber and Ronchetti (2009, Ch. 7).

Next, we show that the maximum likelihood estimator (MLE) for the parameter vector of the LMoLEmodel is consistent.
Estimates for various quantities of interest are also given. We then use simulations to provide empirical validation that the
estimates appear to converge to their true values (as predicted by the consistency of the MLE), and demonstrate situations
whereby the LMoLE is robust in comparison to the GMoLE.

Lastly, we demonstrate the LMoLE model via an application to climate science data. Here, we describe an analysis of
temperature anomalies data from Hansen et al. (2001).

The article will proceed as follows. The LMoLE is defined, and the MM algorithm for its MLE is presented in Section 2.
The relationship between LMoLE and LAD regressions is also given here. Theoretical results and derivations of quantities
of interest are then given in Section 3. Empirical evidence of practical and theoretical claims is provided via simulations in
Section 4. A short application of LMoLE to climate data is described in Section 5. Finally, conclusions are drawn in Section 6.
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