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1. Introduction

The receiver operating characteristic (ROC) curve has gained tremendous popularity since its use in signal detection
theory during World War II. The necessity to evaluate performance of a diagnostic test, as noted by Lusted (1971), has
resulted in the increased attention received by the ROC curve. In addition to being a useful tool for evaluating the efficiency
of a diagnostic test, the ROC curve also presents a practical way to select an optimal threshold and to compare different tests.
However, the empirical ROC curve is not desirable for the simple reason that it violates certain theoretical properties. Many
authors have proposed different ways to model the ROC curve to circumvent this issue. Approaches to modelling the ROC
curve within the literature can be divided into two categories: direct and indirect.

The direct approach, which is less appealing, does not depend on any distributional hypotheses. The idea is to construct
the ROC curve directly from the population scores; in medical settings, these are often divided into two groups, diseased and
non-diseased, without any assumptions (Lloyd, 1998; Zhou and Harezlak, 2002). As mentioned previously, the empirical ROC
curve violates certain theoretical properties, e.g., it is not necessarily monotonically increasing. To overcome this obstacle,
some authors have proposed non-parametric estimation of the density function of each population using kernel smoothing
methods (Hall and Hyndman, 2003; Lloyd, 1998; Lopez-de Ullibarri et al., 2008; Qiu and Le, 2001; Zou et al., 1997). Hence,
the problem is reduced to selection of an optimal bandwidth (Lloyd, 1998; Peng and Zhou, 2004; Zhou and Harezlak, 2002).
Lloyd (1998) suggests using the bootstrap to minimize any distortion when smoothing the ROC curve.

The indirect approach assumes that each population follows a certain distribution and implicitly derives a functional form
for the ROC curve. Both parametric and semi-parametric methods have been proposed to construct the curve. One of the
parametric methods assumes that diseased and non-diseased populations follow a family of distributions, such as Gaussian,

* Correspondence to: Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada, L8S 4L8. Tel.: +1 905 525 9140x23414.
E-mail addresses: cheamas@math.mcmaster.ca (A.S.M. Cheam), mcnicholas@math.mcmaster.ca (P.D. McNicholas).

http://dx.doi.org/10.1016/j.csda.2015.04.010
0167-9473/© 2015 Elsevier B.V. All rights reserved.


http://dx.doi.org/10.1016/j.csda.2015.04.010
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2015.04.010&domain=pdf
mailto:cheamas@math.mcmaster.ca
mailto:mcnicholas@math.mcmaster.ca
http://dx.doi.org/10.1016/j.csda.2015.04.010

A.S.M. Cheam, P.D. McNicholas / Computational Statistics and Data Analysis 93 (2016) 192-208 193

which is the obvious and simple choice, the gamma (Dorfman et al., 1997), and others (Zweig and Campbell, 1993). Goddard
and Hinberg (1990) point out that the Gaussian assumption is not always adequate in some scenarios, such as prostate
cancer. The authors emphasize that an inconsiderate and careless application of the method is not recommended, because
it depends strongly on distributional assumptions. Furthermore, Zhou et al. (2002) stress the need to carefully verify the
consistency of data with the assumptions. An alternative is to specify a functional form of the ROC curve instead of assuming
a distribution. For instance, both populations can be assumed to follow a logistic distribution with the same variance
(Swets, 1986). England (1988) suggests an exponential model with two parameters. Both parametric methods are very
similar because the distribution of the test scores entirely determines the shape of the ROC curve. The main advantages of a
parametric method are simplicity, the smoothness of the curve, and an ability to work with a small number of parameters.

The semi-parametric method is more attractive in terms of flexibility due to the presence of non-parametric and
parametric components. The binormal model (Green and Swets, 1966) is a good example; it assumes that both populations
follow a Gaussian distribution after some monotonically increasing transformation (Hanley, 1996). Hence, the problem is
reduced to estimating the parameters, i.e., the slope and intercept. A range of solutions has been proposed using different
techniques, such as generalized least squares (Hsieh and Turnbull, 1996), maximum likelihood, pseudo-likelihood (Cai and
Moskowitz, 2004; Zhou and Lin, 2008; Zou and Hall, 2000), and other methods. For example, to obtain a smooth binormal
ROC curve, Metz et al. (1998) develop an algorithm called LABROC, which groups continuous data into a finite number of
ordered categories and then uses the maximum likelihood algorithm from Dorfman and Alf (1968) for ordinal data. Li et al.
(1999) suggest a variation of this method, where they model the scores of a diagnostic test for non-diseased and diseased
patients non-parametrically and parametrically, respectively, with no functional relationship assumed between these two
distributions. Instead of directly modelling the distributions of the diagnostic scores of the two populations when the true
status of the disease is known, another approach is to model the probability of knowing the disease status of the diagnostic
scores using logistic regression (Qin and Zhang, 2003). Like any estimation problem, lack-of-fit can be an issue for the semi-
parametric method. In addition to this estimation problem, the construction of confidence bands, for a given choice of both
population distributions, is complicated.

Our motivation is to develop a method that can give an estimate of the ROC curve with more flexibility and smoothness,
produce reliable confidence bands, and ensure the natural monotonicity property of the ROC curve. We propose a Gaussian
mixture (GM) distribution to model both non-diseased and diseased populations. This will enable us to capture more
complex behaviour and distribution shapes than the traditional normality assumption. By combining the Monte Carlo
method and the GM distribution, our method generates an ensemble of replica ROC curves and computes summary
measures, such as the area under the curve (AUC), based on the ensemble.

The remainder of the paper is organized as follows. In Section 2, we provide some background on ROC curves, followed
by details of our proposed approach (Section 3). Results from simulation studies are provided in Section 4 and real data
analyses are discussed in Section 5. In Section 6, some concluding remarks are given and possible extensions are discussed.

2. Background

The ROC curve is defined as a plot of the true positive rate (TPR) against the false positive rate (FPR), or sensitivity versus
1—specificity, for various threshold values. This is generally a curve in the unit square anchored at (0, 0) and (1, 1), and
above the line joining those points. Let X ~ F and Y ~ G be two independent continuous variables denoting the diagnostic
test measure for non-diseased and diseased populations, respectively. By convention, a patient is considered diseased if the
value of the score is greater than a specified threshold. Note that we borrow the notation of Gu et al. (2008) in some of what
follows. For a given threshold value ¢; € R,

+o0

FP(¢;) = @I (x—c¢)dx =P(X > cp), (1
+00

TP(c) = f W0 —c)dy =P(Y > ¢0), @)

where
1, ifu>0,
“W:{Q ifu < 0.
Therefore, the ROC curve is obtained by

{(t, R()} = {(FP(ce), TP(ct))} (3)
wheret e D C [0, 1]. _
When t is given, c; = F~'(t) = F~1(1 — t), where F~1(¢) = inf{x : F(x) > ¢}. IFF~1(t) exists, then the functional form
of the ROC curve is given by
R(£) = TP(ce) = G(F1(£)) = G(c) = P(Y > 1) = P(Y > F (1)), (4)
where F(u) = P(X > u) and G(u) = P(Y > u) are known as survival functions of X and Y, respectively.
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