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a b s t r a c t

Nonparametric regression with a doubly truncated response is introduced. Local constant
and local linear kernel-type estimators are proposed. Asymptotic expressions for the bias
and the variance of the estimators are obtained, showing the deterioration provoked by
the random truncation. To solve the crucial problem of bandwidth choice, two different
bandwidth selectors based on plug-in and cross-validation ideas are introduced. The
performance of both the estimators and the bandwidth selectors is investigated through
simulations. A real data illustration is included. The main conclusion is that the introduced
regression methods perform satisfactorily in the complicated scenario of random double
truncation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Random truncation is a well-known phenomenon which may be present when observing time-to-event data. For exam-
ple, recruitment of lifetimes through a cross-section induces left-truncation, so larger event times are observed with higher
probability. Another example is found when analyzing data which correspond to events taking place before some specific
date; in this case, the time-to-event is right-truncated and, therefore, small lifetimes are over-sampled. These two forms
of truncation are one-sided, and relatively simple estimators exist. See e.g. Klein and Moeshberger (2003). Nonparamet-
ric estimation methods suitable for one-sided random truncation were developed in the last three decades, see for exam-
ple Woodroofe (1985), Tsai et al. (1987) or Stute (1993) for the estimation of a cumulative distribution function, and for
nonparametric regression, Gross and Lai (1996); Iglesias-Pérez and González-Manteiga (1999), Akritas and LaValley (2005)
or Ould-Saïd and Lemdani (2006).

In some applications, two-sided (rather than one-sided) random truncation appears. This occurs, for example, when the
sample restricts to those individuals with event falling between two particular dates. This is the case of the sample provided
by Moreira and de Uña-Álvarez (2010a), who reported data corresponding to children diagnosed of cancer between 1999
and 2003; in this case, the age at cancer diagnosis is doubly truncated, the truncation times have been determined by the
two specific limiting dates of observation. The AIDS Blood Transfusion data in Kalbfleisch and Lawless (1989) is another
example of such a situation. These data are restricted to those cases diagnosed of AIDS prior to January 1987. For this data
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set, the induction times are doubly truncated because HIV was unknown before 1982, so any case of transfusion-related
AIDS before this time would not have been properly classified. See Section 4 for more details. In these two examples, double
truncation affects a retrospective time (time from onset to diagnosis). Therefore, right-censoring issues are not present.

Under double truncation, the observational bias is not so evident as in the one-sided truncated setup. Generally speaking,
one may say that, under double truncation, large and small inter-event times will be less probably observed. Unlike for one-
sided truncation, the nonparametric maximum-likelihood estimator (NPMLE) of the lifetime distribution has no explicit
formunder double truncation; this complicates the practice and the theoretical developments.Wemention that censoring is
a problemdifferent from random truncation, becausewith censored data the researcher has at least somepartial information
on the censored lifetimes.

Compared to the huge literature devoted to one-sided truncation, there are only few papers devoted to the random
double truncationmodel. Efron and Petrosian (1999) introduced the NPMLE of a cumulative distribution function (df) under
double truncation. The asymptotic properties of this NPMLE were further investigated by Shen (2010). Moreira and de Uña-
Álvarez (2010b) introduced a semiparametric estimator of a doubly truncated df, while Moreira et al. (2010) presented an R
package to compute the NPMLE and confidence bands. Methods for testing a quasi-independence assumption between the
lifetime of interest and the truncation timeswere investigated byMartin and Betensky (2005). Despite the existence of these
papers, random double truncation is a phenomenon which is still quite unknown nowadays. In some applications, the goal
is the estimation of a smooth curve such as the density function, the hazard rate function, or the regression function. The
estimation of these curves crucially depends on the selected bandwidth or smoothing parameter (Wand and Jones, 1995).
To the best of our knowledge, the only paper dealing with smoothing methods under double truncation is Moreira and
de Uña-Álvarez (2012), who considered kernel density estimation. In this paper we rather focus on nonparametric kernel
regression.

Let (X∗, Y ∗) be the two-dimensional variable of interest, where Y ∗ is the lifetime or the inter-event time ofmain interest,
and X∗ is a one-dimensional continuous covariate. Since Y ∗ may represent a transformation of the lifetime (such as the
logarithm) in applications, or just a different type of response, we just assume that the support of Y ∗ is contained in the reals.
The goal is the estimation of the regression functionm(x) = E[Y ∗

|X∗
= x]. Due to the presence of randomdouble truncation,

we are only able to observe (X∗, Y ∗) when U∗
≤ Y ∗

≤ V ∗, where (U∗, V ∗) are the truncation times; in that case, (U∗, V ∗)
are also observed. On the contrary, when U∗

≤ Y ∗
≤ V ∗ is violated, nothing is observed. As usual with random truncation,

we assume that the truncation times are independent of (X∗, Y ∗). Let (U1, V1, X1, Y1), . . . , (Un, Vn, Xn, Yn) be the observed
sample, these are iid data with the same distribution as (U∗, V ∗, X∗, Y ∗) given U∗

≤ Y ∗
≤ V ∗, and letmT (x) = E[Y1|X1 = x]

be the observed regression function. In general, mT (x) and the target m(x) will differ; see e.g. Fig. 4, in which these two
curves are estimated for the AIDS Blood Transfusion data. This is because of the truncating condition which introduces
an observational bias. Similar features were reported in the context of length-biasing, in which the relative probability of
sampling a given value of (X∗, Y ∗) is proportional to the length of Y ∗, see e.g. Cristóbal and Alcalá (2000). In the doubly
truncated setup, this relative probability of observing (X∗, Y ∗) = (x, y) is given by G(y) = P(U∗

≤ y ≤ V ∗), since (X∗, Y ∗)
and (U∗, V ∗) are independent. This function G can be estimated from the data by maximum likelihood principles, see the
iterative algorithm in Section 2.

The rest of the paper is organized as follows. In Section 2we introduce the relationship between the observed conditional
distribution and that of interest. As it will be seen, by downweighting the (Xi, Yi)s with the largest values of Gn(Yi) (where
Gn is an estimator for G), we are able to obtain a consistent estimator of m(x). Weighted local polynomial type estimators
are considered to this end. We give the asymptotic bias and variance of the weighted Nadaraya–Watson (i.e. local constant)
estimator and the weighted local linear kernel estimator, and a confidence interval is introduced. We also propose two
different methods to choose the bandwidth for these estimators in practice. In Section 3 we investigate the finite-sample
performance of the estimators, and the bandwidth selectors through simulations. Section 4 illustrates all the proposed
methods by considering AIDS Blood Transfusion data of Kalbfleisch and Lawless (1989). Finally, in Section 5 we report the
main conclusions of our investigation. The technical proofs and details are deferred to the Appendix.

2. The estimators

In this Section we introduce the proposed estimators. We also include the asymptotic results (Section 2.1) and the band-
width selection algorithms (Section 2.2). Firstly we introduce the needed notations. Let F(.|x) be the conditional df of Y ∗

given X∗
= x, so m(x) =


∞

−∞
tF(dt|x), and let α(x) = P(U∗

≤ Y ∗
≤ V ∗

|X∗
= x) =


∞

−∞
G(t)F(dt|x) be the conditional

probability of no truncation. It is assumed that α(x) > 0. Let F∗(.|x) be the observable conditional df, that is F∗(y|x) =

P(Y1 ≤ y|X1 = x). We have

F∗(y|x) = α(x)−1
 y

−∞

G(t)F(dt|x)

for every y. This means that, for a fixed value of the covariate, the response Y ∗ is observed with a relative probability
proportional to G(Y ∗). Conversely, provided that G(t) > 0 for all t , one may write F(y|x) = α(x)

 y
−∞

G(t)−1F∗(dt|x),
where α(x) = 1/α∗(x) with α∗(x) =


∞

−∞
G(t)−1F∗(dt|x) = E


G(Y1)

−1
|X1 = x


. Therefore, the target m(x) is written as

m(x) = m∗(x)/α∗(x)wherem∗(x) = E

Y1G(Y1)

−1
|X1 = x


.
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