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a b s t r a c t

Bayesian nonparametric inferential procedures based on Markov chain Monte Carlo
marginal methods typically yield point estimates in the form of posterior expectations.
Though very useful and easy to implement in a variety of statistical problems, these meth-
ods may suffer from some limitations if used to estimate non-linear functionals of the
posterior distribution. The main goal is to develop a novel methodology that extends a
well-establishedmarginal procedure designed for hazardmixturemodels, in order to draw
approximate inference on survival functions that is not limited to the posterior mean but
includes, as remarkable examples, credible intervals and median survival time. The pro-
posed approach relies on a characterization of the posterior moments that, in turn, is used
to approximate the posterior distribution bymeans of a technique based on Jacobi polyno-
mials. The inferential performance of this methodology is analyzed by means of an exten-
sive study of simulated data and real data consisting of leukemia remission times. Although
tailored to the survival analysis context, the proposed procedure can be adapted to a range
of other models for which moments of the posterior distribution can be estimated.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Most commonly used inferential procedures in Bayesian nonparametric practice rely on the implementation of sampling
algorithms that can be gathered under the general umbrella of Blackwell–MacQueen Pólya urn schemes. These are
characterized by the marginalization with respect to an infinite-dimensional random element that defines the de Finetti
measure of an exchangeable sequence of observations or latent variables. Henceforth these will be referred to as marginal
methods. Besides being useful for the identification of the basic building blocks of ready to use Markov chain Monte Carlo
(MCMC) sampling strategies, marginal methods have proved to be effective for an approximate evaluation of Bayesian point
estimators in the form of posterior means. They are typically used with models for which the predictive distribution is
available in closed form. Popular examples are offered by mixtures of the Dirichlet process for density estimation (Escobar
andWest, 1995) and mixtures of gamma processes for hazard rate estimation (Ishwaran and James, 2004). While becoming
well-established tools, these computational techniques are easily accessible also to practitioners through a straightforward
software implementation (see for instance Jara et al., 2011). Though it is important to stress their relevance both in theory
and in practice, it is also worth pointing out that Blackwell–MacQueen Pólya urn schemes suffer from some drawbacks
which we wish to address here. Indeed, one easily notes that the posterior estimates provided by marginal methods are
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not suitably endowed with measures of uncertainty such as posterior credible intervals. Furthermore, using the posterior
mean as an estimator is equivalent to choosing a square loss function whereas in many situations of interest other choices
such as absolute error or 0–1 loss functions and, as corresponding estimators, median or mode of the posterior distribution
of the survival function, at any fixed time point t , would be preferable. Finally, they do not naturally allow inference on
functionals of the distribution of survival times, such as the median survival time, to be drawn. A nice discussion of these
issues is provided by Gelfand and Kottas (2002) where the focus is on mixtures of the Dirichlet process: the authors suggest
complementing the use of marginal methods with a sampling strategy that aims at generating approximate trajectories of
the Dirichlet process from its truncated stick-breaking representation.

The aim is to propose a new procedure that combines closed-form analytical results arising from the application of
marginal methods with an approximation of the posterior distribution which makes use of posterior moments. The whole
machinery is developed for the estimation of survival functions that are modeled in terms of hazard rate functions. To
this end, let F denote the cumulative distribution function (CDF) associated to a probability distribution on R+. The
corresponding survival and cumulative hazard functions are denoted as

S(t) = 1 − F(t) and H(t) = −


[0,t]

dF(s)
F(s−)

,

for any t > 0, respectively, where F(s−) := limε↓0 F(s − ε) for any positive s. If F is absolutely continuous, one has
H(t) = − log(S(t)) and the hazard rate function associated to F is, thus, defined as h(t) = F ′(t)/[1 − F(t−)]. It should be
recalled that survival analysis has been one of themost relevant areas of application of Bayesian nonparametricmethodology
soon after the groundbreaking contribution of Ferguson (1973). A number of papers in the ’70s and the ’80s have been
devoted to the proposal of new classes of priors that accommodate for a rigorous analytical treatment of Bayesian inferential
problems with censored survival data. Among these it is worth mentioning the neutral to the right processes proposed in
Doksum (1974) and used to define a prior for the CDF F : since they share a conjugacy property they represent a tractable
tool for drawing posterior inferences. Another noteworthy class of priors has been proposed in Hjort (1990), where a beta
process is used as a nonparametric prior for the cumulative hazard functionH . Also in this case, one can considerably benefit
from a useful conjugacy property.

As already mentioned, the plan consists in proposing a method for full Bayesian analysis of survival data by specifying
a prior on the hazard rate h. The most popular example is the gamma process mixture that has been originally proposed
in Dykstra and Laud (1981) and generalized in later work by Lo and Weng (1989) and James (2005) to include any mixing
random measure and any mixed kernel. Recently Lijoi and Nipoti (2014) have extended such framework to the context
of partially exchangeable observations. The uses of random hazard mixtures in practical applications have been boosted
by the recent developments of powerful computational techniques that allow for an approximate evaluation of posterior
inferences on quantities of statistical interest. Most of these arise from a marginalization with respect to a completely
random measure that identifies the de Finetti measure of the exchangeable sequence of observations. See, e.g., Ishwaran
and James (2004). Though they are quite simple to implement, the direct use of their output can only yield point estimation
of the hazard rates, or of the survival functions, at fixed time points through posterior means. The main goal of the present
paper is to show that a clever use of a moment-based approximationmethod does provide a relevant upgrade on the type of
inference one can draw viamarginal sampling schemes. The takeawaymessage is that the information gathered bymarginal
methods is not confined to the posterior mean but is actually much richer and, if properly exploited, can lead to a more
complete posterior inference. To understand this, one can refer to a sequence of exchangeable survival times (Xi)i≥1 such
that P[X1 > t1, . . . , Xn > tn | P̃] =

n
i=1 S̃(ti) where P̃ is a random probability measure on R+ and S̃(t) = P̃((t, ∞)) is the

corresponding random survival function. Given a suitable sequence of latent variables (Yi)i≥1, a closed-form expression for

E[S̃r(t) | X, Y ], for any r ≥ 1, and t > 0, (1)

with X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn), will be provided. Our strategy consists in approximating the posterior
distribution of S̃(t), at each instant t , and relies on the fact that, along with the posterior mean, marginal models allow
to straightforwardly estimate posterior moments of any order of S̃(t). Indeed, an MCMC sampler yields a sample from
the posterior distribution of Y given X : this can be used to integrate out the latent variables appearing in (1) and obtain
a numerical approximate evaluation of the posterior moments E[S̃r(t) | X]. These are finally used to deduce, with almost
negligible effort, an approximation of the posterior distribution of S̃(t) and, in turn, to estimate somemeaningful functionals
of S̃(t).

It is to be mentioned that one could alternatively resort to a different approach that boils down to the simulation of the
trajectories of the completely random measure that defines the underlying random probability measure from its posterior
distribution. In density estimation problems, this is effectively illustrated in Nieto-Barajas et al. (2004), Nieto-Barajas and
Prünster (2009) and Barrios et al. (2013). As for hazard rates mixtures estimation problems, one can refer to James (2005);
Nieto-Barajas andWalker (2004) and Nieto-Barajas (2014). In particular, James (2005) provides a posterior characterization
that is the key for devising a Ferguson andKlass (1972) representation of the posterior distribution of the completely random
measure which enters the definition of the prior for the hazards. Some numerical aspects related to the implementation of
the algorithm can be quite tricky since one needs to invert the Lévy intensity to simulate posterior jumps and a set of suitable
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