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a b s t r a c t

Several attempts to estimate covariance matrices with sparsity constraints have been
made. A convex optimization formulation for estimating correlation matrices as opposed
to covariance matrices is proposed. An efficient accelerated proximal gradient algorithm
is developed, and it is shown that this method gives a faster rate of convergence. An
adaptive version of this approach is also discussed. Simulation results and an analysis of
a cardiovascular microarray confirm its performance and usefulness.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The covariance matrix plays a fundamental role and is a pivotal quantity in statistical analysis, for example in linear
regression and multivariate analysis. Given observations xi ∈ Rp, i = 1, . . . , n from the same distribution F , a simple way
to estimate the population covariancematrix, which is assumed to be non-degenerate, is via the empirical covariancematrix

Σn = (σ̂ij)1≤i,j≤p =
1

n − 1

n
i=1

(xi − x̄)(xi − x̄)T ,

where x̄ = n−1n
i=1 xi is the sample mean. When the dimensionality p is high compared to the sample size n, however, the

sample covariance matrix becomes less useful or even degenerate if p > n.
To overcome this difficulty, a host of approaches have been proposed to estimate the covariance under the assumption

that it is sparse or approximately so. Bickel and Levina (2008a,b) proposed to band or to threshold the entries of the sample
covariancematrix. Rothman et al. (2009) studiedmore flexible thresholding rules. Cai and Liu (2011) advocated to adaptively
threshold the entries according to their individual variability. Cai and Yuan (2012) applied blocked thresholding for adaptive
estimation. A major drawback of these approaches is that the estimated covariance matrix is not guaranteed to be positive
definite, a minimum requirement for a matrix to be a covariance matrix. Lam and Fan (2009) outlined a unified analysis
of various early approaches for estimating sparse matrices. Cai and Zhou (2012) discussed optimal rates of convergence
for estimating sparse covariance matrices under various assumptions. Yi and Zou (2013) studied a tapering procedure and
Maurya (2014) developed a doubly convex method for estimating the inverse of a covariance matrix.
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To simultaneously achieve sparsity and positive definiteness, Bien and Tibshirani (2011) applied the penalized likelihood
method under Gaussianity, but their objective function is non-convex. Lin (2010) provided an algorithm for obtaining the
local optimal solution of this formulation. Rothman (2012) suggested to minimize the squared Frobenius distance between
the sample covariance matrix and the estimate by adding a sparsity penalty, and a log-determinant barrier that guarantees
the positive definiteness. Xue et al. (2012) studied a constrained optimization formulation that enforces more explicitly the
positive definite constraint. More specifically, they proposed to solve the following optimization problem

Σ̃ = argmin
Σ

∥Σ −Σn∥
2
F + ρ|Σ |1, such thatΣ ≽ εI, (1)

where ∥ · ∥F is the Frobenius norm, | · |1 is the element-wise ℓ1-norm for sparsity (Tibshirani, 1996), andΣ ≽ εI means that
Σ − εI is semipositive definite for a small positive constant ε. Thus,Σ itself is guaranteed positive definite.

There are potential problems with estimating the covariance matrix. The covariance matrix is not scale invariant. Should
one scale the variables in xi differently, Σ̃ would be different no matter how λ is chosen. A common practice is to normalize
the variables to have zero mean and unit variances before the analysis, effectively making Σn a sample correlation matrix.
However, in estimating Σ , this important prior information is ignored and Σ is treated as a usual covariance matrix as
in Rothman (2012) and Xue et al. (2012). As we show in the theoretical study, this incurs p additional parameters in the
diagonal ofΣ that slows down the rate of convergence in terms of the spectral and the Frobenius norm.

To overcome the limitations elaborated above, we propose a new approach termed Sparse Estimation of the Correlation
matrix (SEC). Instead of targeting a high-dimensional covariance matrix, we estimate a sparse correlation matrix by forcing
the diagonal entries of the estimate to be unity. In addition, we formulate a general approach that adaptively penalizes the
correlations according to the empirical ones.

Because estimating a correlation is notably much more challenging than estimating a covariance matrix, and in practice
Σn may have large dimension so that it costs much to achieve a desirable solution, a new and efficient algorithm is highly
needed. In this paper we take a dual approach to solve this constrained optimization by the accelerated proximal gradient
algorithm (APG). As shown by Nesterov (1983), APG is a fast gradient method with the attractive O(1/k2) complexity of the
function value, where k is the iteration number. The resulting estimate is guaranteed to be positive definite and a correlation
matrix. Comparing to the estimation of a covariance matrix, the new estimate enjoys a faster rate of convergence. After this
paper was completed, we became aware of Liu et al. (2014) where they used a similar ℓ1 penalized formulation as ours and
a similar algorithm as in Xue et al. (2012). As demonstrated in the simulation study, however, our algorithm is usually faster
and the performance of the algorithm in Xue et al. (2012) and Liu et al. (2014) depends on a parameter usually difficult to
tune.

The rest of the paper is organized as follows. In Section 2, we present the SECmethod and discuss a weighted SEC scheme
for adaptively estimating the correlations. In Section 3, we give some preliminaries onMoreau–Yosida regularization which
will be used to design the algorithm later on. Then we introduce the framework of the APG algorithm to solve the dual
problem of (3). Section 4 presents the statistical property of our SEC model. Section 5 reports the numerical performance
and Section 6 draws the conclusion. All proofs are deferred to the Appendix.

2. Sparse estimation of correlation

Let Rn = D−1
n ΣnD−1

n be the empirical correlation matrix, where Dn is the diagonal matrix with the square roots of the
diagonal elements ofΣn. We estimate the sparse correlation matrix by solving

R̂ = argmin
R

1
2
∥R − Rn∥

2
F + ρ|R|1, such that R ≽ εI, Rjj = 1, j = 1, . . . , p. (2)

Themajor difference between this approach and that of Xue et al. (2012) is thatwe addhard constraints Rjj = 1, j = 1, . . . , p
to the formulation, making sure effectively that the correlation matrix is the main quantity of interest. In this work, we set
ε = 10−5. We note that the choice of ε makes little difference as long as it is small enough. In practice, we recommend to
use an ε such that log10 ε ∈ [−8,−5].

Inspired by the adaptive lasso (Zou, 2006), we also consider a more general SEC problemwith the weighted ℓ1 penalty as
ρ|W ◦R|1. Here ◦ denotes the Hadamard product, i.e.W ◦R = (WijRij)p×p. We aim to solve a general optimization problem as

R̂ = argmin
R

1
2
∥R − Rn∥

2
F + ρ|W ◦ R|1

s.t. Rij = bij, (i, j) ∈ Ω

R ≽ εI.

(3)

For the equality constraints in (2), Ω = {(j, j) : j = 1, . . . , p}, and bij = 1. To adaptively penalize the entries in R, one
possible choice of the weight matrixW is ( 1

|(Rn)ij|
)p×p, the componentwise inverse of the sample correlationmatrix. The idea

is to apply a larger amount of penalization to smaller empirical correlations.
Computationally, (Rn)ij may be close to zero sometimes if the true (ij)th correlation is close to zero, so that Wij will be

close to ∞. As a result, this will cause a great difficulty for computation since the constraint R ≽ εI strictly prohibits us
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