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a b s t r a c t

Among the measures of a distribution’s location, the mode is probably the least often used,
although it has some appealing properties. Estimators for the mode of univariate distribu-
tions are widely available. However, few contributions can be found for the multivariate
case. A consistent direct multivariate mode estimation procedure, calledminimum volume
peeling, can be outlined as follows. The approach iteratively selects nested subsampleswith
a decreasing fraction of sample points, looking for theminimumvolume subsample at each
step. Themode is then estimated by calculating themeanof all points in the final set. The ro-
bustness of the method is investigated by analyzing its finite sample breakdown point and
algorithms to determine minimum volume sets are discussed. Simulation results confirm
that using minimum volume peeling leads to efficient mode estimates both in uncontam-
inated as well as contaminated situations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Three concurrentmeasures of location are offered to studentswithin standard statistical textbooks: the arithmeticmean,
the median, and the mode. Amongst them, most of the pages are devoted to the mean, some to the median, and few (if any)
to the mode. Accordingly, Dalenius (1965) called the mode the most neglected parameter some 50 years ago.

However, themodehasmany relevant properties that have beenwell-known in the literature for years.Most importantly,
the mode is an appropriate location parameter for skewed distributions. This is why the mode finds application in many
different fields where nonnormal or skewed distributions occur. For instance, it is used in biology, medicine, astronomy, and
computer sciences (see e.g. the references listed in Hedges and Shah, 2003, and Schwartz and Rozumalski, 2005). Moreover,
the mode is a convenient location parameter for truncated distributions. This led Lee (1989) to introduce mode regression
where the conditional mode of a response variable is investigated. Finally, it should be mentioned that the value that most
likely occurs is an interesting parameter by itself.

Estimating the mode has been extensively studied in the univariate case, and two main approaches (dating back to
the 1960s) are available. Parzen (1962) introduced the indirect approach by suggesting as mode estimator the value that
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maximizes an appropriate nonparametric estimate of the distribution density. On the other hand, direct estimators are also
available. Chernoff (1964) suggested considering the center of an interval of given length containing the most observations.
Venter (1967), instead, suggested adopting as estimator the midpoint of the smallest interval containing a given proportion
of data points. Since then, many other authors have presented estimators within these two classes and/or studied their
properties. Recently, Bickel and Frühwirth (2006) studied the robustness properties of a univariate Venter-type estimator
that turned out to have a 50% breakdown value.

In contrast, few contributions have been made to estimate the mode of a multivariate distribution. An early overview on
multivariatemode estimation can be found in Sager (1983). Adopting the indirect approach, Rüschendorf (1977) introduced
the idea of using a density estimator, with further developments in Abraham et al. (2003). Recently, Jing et al. (2012)
proposed an indirect estimation approach based on polynomial histograms. Some 35 years ago, Sager (1979) defined a
Venter-type estimator that exploits an iterative peeling procedure to find the multivariate region with minimum volume.
Unfortunately, at that time no efficient algorithms were at hand to determine a minimum volume set. Recently, Hsu and
Wu (2013) provided an indirect multivariate mode estimator by extending the univariate estimator of Bickel (2003) to the
multivariate setting. This estimator works well for multivariate distributions that can be normalized through a Box–Cox
transformation and, in this respect, it is a parametric procedure. It consistently estimates the mode of multivariate log-
normal distributions, but fails whenever the Box–Cox transformation does not yield a distribution close to a multivariate
normal (see e.g. Hernandez and Johnson, 1980). In addition, it is not a robust estimator. For this reason, minimum
volume peeling, a nonparametric direct multivariate mode estimation procedure based on Sager’s idea is described whose
consistency is shown by Sager (1979). Furthermore, it is proven that minimum volume peeling is also highly robust.

The paper is organized as follows. In the next section Sager’s estimationprocedure is described fromapeeling perspective,
whereas its robustness properties are studied in Section 3. Section 4 describes approaches to determine a subset of given
size with minimum volume. One is tailor-made for Sager’s procedure and minimizes the volume of the subset’s convex
hull. The others rely on minimizers of elliptic bodies (Lopuhaä and Rousseeuw, 1991), namely the Minimum Covariance
Determinant estimator (MCD) andMinimumVolumeEllipsoid estimator (MVE). Section5 contains the results of a simulation
study providing insights into the performance of both approaches under various conditions. A brief conclusion finishes the
paper.

2. Sager’s multivariate mode estimation procedure

A point θ ∈ Rd is said to be the mode of a d-variate continuous density function f if f (X) < f (θ), ∀X ≠ θ,X ∈ Rd. If f is
a strongly unimodal distribution with unique mode θ, it follows that f decreases along any ray emanating from θ and that
the greatest concentration of probability occurs around it (see e.g. Sager, 1979).

A direct estimator of the multivariate mode θ is any point θ̂ that belongs either to the set with the maximum fraction of
points in a given volume (the most dense set) or to the minimum volume set containing a given fraction of points. Focusing
on the latter idea, the main issue becomes to efficiently and correctly select such a set. Sager’s procedure to estimate the
mode can be summarized by the following steps.

1. Given a data set, look for the subset of a certain size with minimal volume.
2. Discard the points not belonging to this set.
3. Repeat steps 1–2 until a sufficiently small subset remains.
4. A point estimate of the mode is the arithmetic mean of the points selected in the last iteration.

It isworth noting that thisminimumvolume peeling procedure is similar to the contemporarily published convex hull peeling
(Barnett, 1976). There, a sequence of nested sets is determined by successively deleting the convex hull (CH) of the preceding
set. However, while convex hull peeling leads to the multivariate median, minimum volume peeling yields the multivariate
mode.

Formally, let X = (X1,X2, . . . ,Xn) be a random sample of size n from a d-variate continuous distribution f with mode
θ, and let 0 < p < 1. Assume all points are in general position.

At Step 1, given the fraction of points n1 = ⌊n · p⌋, select a subset X∗
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1 = argmin
X
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1
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j
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any subset of size n1 of X, and CHV (A) is the volume of the convex hull of the set A. At Step 2, X∗

1 is retained and further
peeled.

Thus, repeating steps 1 and 2, at the k-th iteration, the points Xi ∈ X∗

k are selected such that
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where nk =

n(k−1) · p


. The peeling procedure stops when the subset size nk degenerates to less than d + 1 points. This is

because all subsets containing less than d + 1 points possess a unique convex hull volume of 0. Hence, the algorithm stops
if ⌊nk · p⌋ < d + 1.
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