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Abstract

Kim and Nelson [1999. State Space Models with Regime Switching. MIT Press, Cambridge, MA] and others extended the
framework of state space models involving independent regime changes to the Markov dependent case. The cost of dealing with
state space models with Markov switching is high in computational effort because of the number of the possible paths through the
chain. Thus it is necessary to make some approximations in order to obtain a computationally feasible algorithm for estimation.
The approximations depend on modified smoothing and filtering recursions that can be easily incorporated into an EM algorithm
for maximum likelihood estimation. To investigate the accuracy of approximations, we develop a new method to obtain more exact
solutions, and then compare the two methods. We apply both methods to a simulated series. The result shows that employing the
approximation-based algorithm not only provides accurate results but also leads to a significant reduction in the computational
costs. We also apply the methods to an influenza mortality series, in which we develop a model that is general enough to include
most structural models useful in monitoring changes of regime. The model proposed has the flexibility to deal with a wide range
of problems involving possible regime shifts in pattern that may be seen to occur in many biological, medical and epidemiological
studies.
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1. Introduction

The state space model has become a powerful tool for modeling and forecasting dynamic systems. A growing number
of published papers that employ it demonstrate its usefulness and broadness of application. In essence, a state space
model is one in which an observed variable is the sum of a linear function of the state variable and an error. The state
variable, in turn, evolves according to a stochastic difference equation that depends on parameters that are generally
unknown. Hence, for such a state space model, given the observed data, estimations of the unobserved state vector and
the parameters are of primary interest.

A switching state space model is obtained, if we assume that, in addition to the unobserved state variable, a discrete
unknown switching variable influences the distribution of the observed data. A typical way of including a switching
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mechanism into a Gaussian state space model is to assume that one of the variances, e.g. the variance appearing in the
observation equation is heteroskedastic and switches between various values depending on the state of the switching
variable (Pena and Guttman, 1988). Alternatively, one or all the variances of the transition equation may be Markov
switching heteroskedastic (Kim, 1993; Engle and Kim, 1999). Another way of including a switching mechanism
is to assume that a drift term is present in the transition equation which switches between various values (Kim,
1994). Shumway and Stoffer (1991) considered the measurement matrices as switching endogenously according to an
independent random process. They assumed that the possible configurations are state in a nonstationary independent
process defined by the time-varying probabilities independent of past measurement matrices and of past data. In this
paper, we consider the state space model with Markov switching. This means that the measurement matrices switch
according to states in a hidden Markov chain.

Compared to the state space model with independent switching, the difficulty in extending the filtering algorithm
to the state space model with Markov switching is the dependence among the data and the fact that the Markov
switching process, st , is unobserved, which makes it necessary to enumerate over all possible histories to derive the
filtering equations. The computation involved, requiring integration over mixtures of normal distributions, is excessively
complicated without some approximations. In Section 2 we consider an approximate EM (AEM) algorithm for model
(1) below.

Our primary objective of this paper is to evaluate the effects of the approximation. To this end, we develop a Monte
Carlo type of EM (MCEM) to obtain more accurate solutions for the smoothed states or state probabilities in Section
3. In Section 4, we apply the AEM and MCEM methods to a simulated series and conclude with an application of a
switching state space model to analyze the monthly pneumonia and influenza deaths in the US from 1968 to 1978. We
focus on the following two objectives. The first objective is to compare the smoother obtained using the approximations
to those using Markov Chain Monte Carlo. A second objective is to compare the parameter estimates obtained using
the AEM and MCEM procedures.

2. The approximate EM (AEM)

2.1. The one-step approximation

We consider the following state space model with Markov switching:

xt = �xt−1 + wt ,

yt = Ast xt + vt , t = 1, . . . , n. (1)

The state equation xt = �xt−1 + wt models the evolution of p × 1 state vector xt from the past state vector xt−1,
t = 1, 2, . . . , n. We assume that the wt are p × 1 independent and identically distributed, zero-mean normal vectors
with covariance matrix Q. We also assume that the process starts with a normal vector x0 that has mean �0 and p × p

covariance matrix �0. In this model, we do not observe the state vectors xt directly, but can only observe a linear
transformed version of it yt . The measurement matrices Ast are dependent on an unobserved, discrete-valued, M-state
Markov-switching variable st with initial probabilities �j =P(s1=j) and transition probabilities �ij =P(st =j |st−1=i),
i, j = 1, 2, 3, . . . , M , where

∑M
j=1 �ij = 1 for all i. Hence, Ast is random with probability of assuming any one of M

possible values A1, . . . , AM at any time point t . The error vectors vt are independent zero-mean white noise vectors
with common covariance R.

Denote the observed vector up to time t as Yt = [y1, y2, . . . , yt ]. The treatment of the state space model given by (1)
depends upon being able to compute a forecast of xt which is formed not only based on Yt−1, but also conditional on
the random variable st taking on the value j . Throughout this paper, we will use the following definitions:

x
(j)
t |s = E(xt |Ys, st = j), xt |s = E(xt |Ys),

P
(j)
t |s = E((xt − x

(j)
t |s )(xt − x

(j)
t |s )′|Ys, st = j),

and

Pt |s = E((xt − xt |s)(xt − xt |s)′|Ys).
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