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We propose a new model of realistic input: k-guardable objects. An object is k-guardable
if its boundary can be seen by k guards. We show that k-guardable polygons generalize
two previously identified classes of realistic input. Following this, we give two simple
algorithms for triangulating k-guardable polygons. One algorithm requires the guards as
input while the other does not. Both take linear time assuming that k is constant and both
are easily implementable.

© 2013 Published by Elsevier B.V.

1. Introduction

Algorithms and data structures in computational geometry often display their worst-case performance on intricate in-
put configurations that seem artificial or unrealistic when considered in the context of the original problem. Indeed, in
“practical” situations, many algorithms and data structures—binary space partitions are a notable example—tend to perform
much better than predicted by the theoretical bounds. An attempt to understand this disparity and to quantify “practical” or
“normal” with respect to input are the so-called realistic input models [7]. Here one places certain restrictions on the shape
and/or distribution of the input objects so that most unusual hypothetical worst-case examples are excluded. Analyzing the
algorithm or data structure in question under these input assumptions tends to lead to performance bounds that are much
closer to actually observed behavior.

Many realistic input models have been proposed. These include low-density scenes [7], where it is assumed that the
number of “large” objects intersecting a “small” volume is bounded, and local polyhedra [11], where it is assumed that the
ratio of lengths between edges coming from a single vertex is limited by a constant. One of the most widely studied realistic
input models assumes that input objects are fat, that is, they are not arbitrarily long and skinny. There are several ways to
characterize fat objects—see Section 3 for formal definitions.

In this paper, we propose a new measure to define realistic input: the number of guards that are required to see the
boundary of an input object. We use the term k-guardable to denote any object whose boundary can be seen by k guards.
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A rigorous definition of what it means for a guard to see can be found in the next section. In Section 3, we discuss the
connection between k-guardable polygons and other measures of realistic input. In particular, we show that (α,β)-covered
polygons are O (1)-guardable. (α,β)-covered polygons model the intuitive notion of fatness for non-convex input: an (α,β)-
covered polygon P has the property that every point p ∈ ∂ P admits a triangle inside P with minimum angle at least α and
minimum edge length at least β · diam(P ) for given constants α and β .

In Section 4, we describe two algorithms for triangulating k-guardable polygons. Our algorithms, which were designed
with simplicity in mind, take O (kn) time, that is, linear time assuming that k is constant. If the link diameter—see the next
section for a formal definition—of the input polygon is d, then the algorithm described in Section 4.1 takes O (dn) time—
a slightly stronger result. This algorithm uses the linear-time computation of an edge-visibility polygon as a subroutine. In
Section 4.2, we describe an algorithm that uses only scans of the input polygon and stacks, but requires the actual guards
as input.

Related work. In 1991 Chazelle [4] presented a linear-time algorithm to triangulate any simple polygon. However, after all
these years it is still a major open problem in computational geometry to design an implementable linear-time algorithm
for triangulation. There are several implementable algorithms which triangulate polygons in near-linear time. For example,
Kirkpatrick et al. [16] describe an O (n log log n) algorithm and Seidel [22] presents a randomized algorithm which runs in
O (n log∗ n) expected time, and Amato et al. [2] present another randomized algorithm that runs in O (n) expected time that
is based in large part on Chazelle’s algorithm. We contend that our algorithm is conceptually simpler than the O (n log log n)

algorithm and that it has a slight advantage over the Seidel algorithm and the algorithm of Amato et al. because it is deter-
ministic. It is also interesting to note that the Seidel algorithm requires Ω(n log n) random bits, which makes it theoretically
undesirable in some models of computation.

Relationships between shape complexity and the number of steps necessary to triangulate polygons have been inves-
tigated before. For example, it has been shown that monotone polygons [23], star-shaped polygons [21], and edge-visible
polygons [24] can all be triangulated in linear time by fairly simple algorithms. Other linear algorithms have been given,
under the assumption that the number of reflex vertices [13] or the sinuosity [5] is bounded by a constant.

The subject of guarding is also well studied. The book by O’Rourke [19] gives a good overview of the early results.
Perhaps most relevant are the hardness results. Determining whether the entire interior of a polygon P can be seen by at
most k guards is NP-complete [20] and NP-hard to approximate within a (1 + ε) factor [9]. The same results hold when
only the boundary of P needs to be guarded: it is NP-complete to determine whether the boundary of P can be seen by at
most k guards [17] and this problem is also APX-hard [9]. Finally, it has recently been shown [1] that O (k) guards suffice to
see the interior of a polygon if k guards suffice to see the boundary.

Several algorithms and data structures exist for collections of realistic objects. For example, the problem of ray-shooting
in an environment consisting of fat objects has been studied extensively [3,6,14]. However, there are few results concerning
individual realistic objects. We hope that our results on triangulating realistic polygons will encourage further research in
this direction.

2. Tools and definitions

Throughout this paper let P be a simple polygon with n vertices. We assume that P has no vertical edges. If P has
vertical edges, it is easy to rotate it by a small amount until the vertical edges are eliminated.

We denote the interior of P by int(P ), the boundary of P by ∂ P , and the diameter of P by diam(P ). The boundary is
considered part of the polygon, that is, P = int(P ) ∪ ∂ P . We say that a point p is in P if p ∈ int(P ) ∪ ∂ P .

The segment or edge between two points p and q is denoted by pq. The same notation implies the direction from p
to q if necessary. Two points p and q in P see each other if pq ∩ P = pq. If p and q see each other, then we also say that p
is visible from q and vice versa. We call a polygon P k-guardable if there exists a set G of k points in P called guards such
that every point p ∈ ∂ P can see at least one point in G .

A star-shaped polygon is defined as a polygon that contains a set of points—the kernel—each of which can see the
entire polygon. If there exists an edge pq ⊂ ∂ P such that each point in P sees some point on pq, then P is weakly edge-
visible. The visibility polygon of a point p ∈ P with respect to P , denoted by VP(p, P ) is the set of points in P that are
visible from p—see Fig. 1. Visibility polygons are star-shaped and have complexity O (n). We do not describe the procedure
for computing the visibility polygon in this paper. The following lemma summarizes the time complexity of computing a
visibility polygon.

Lemma 1. (See El Gindy and Avis [10].) VP(p, P ) can be computed in O (n) time.

Let Q be a subpolygon of P , where all vertices of Q are on ∂ P . If all vertices of Q coincide with vertices of P , then we
call Q a pure subpolygon. If ∂ P intersects an edge w of ∂ Q only at w ’s endpoints, then w is called a window of Q . Any
window w separates P into two subpolygons. The one not containing Q is the pocket of w with respect to Q (see Fig. 1).
Any vertex added to the polygon (such as the endpoint of a window) is called a Steiner point.

The algorithm by El Gindy and Avis [10], while not trivial, is fairly simple. It involves a single scan of the polygon and a
stack. See O’Rourke’s book [19] for a good summary.
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