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A fundamental and well-studied problem in computational geometry is range searching,
where the goal is to preprocess a set, S , of geometric objects (e.g., points in the plane) so
that the subset S ′ ⊆ S that is contained in a query range (e.g., an axes-parallel rectangle)
can be reported efficiently. However, in many situations, what is of interest is to generate
a more informative “summary” of the output, obtained by applying a suitable aggregation
function on S ′. Examples of such aggregation functions include count, sum, min, max, mean,
median, mode, and top-k that are usually computed on a set of weights defined suitably
on the objects. Such range-aggregate query problems have been the subject of much recent
research in both the database and the computational geometry communities.
In this paper, we further generalize this line of work by considering aggregation functions
on point-sets that measure the extent or “spread” of the objects in the retrieved set S ′.
The functions considered here include closest pair, diameter, and width. The challenge here
is that these aggregation functions (unlike, say, count) are not efficiently decomposable in
the sense that the answer to S ′ cannot be inferred easily from answers to subsets that
induce a partition of S ′. Nevertheless, we have been able to obtain space- and query-
time-efficient solutions to several such problems including: closest pair queries with axes-
parallel rectangles on point sets in the plane and on random point-sets in R

d (d � 2),
closest pair queries with disks on random point-sets in the plane, diameter queries on
point-sets in the plane, and guaranteed-quality approximations for diameter and width
queries in the plane. Our results are based on a combination of geometric techniques,
including multilevel range trees, Voronoi Diagrams, Euclidean Minimum Spanning Trees,
sparse representations of candidate outputs, and proofs of (expected) upper bounds on the
sizes of such representations.
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1. Introduction

Range searching is an important and well-studied class of problems in computational geometry. In a typical instance of
this problem, called range reporting, we are given a set, S , of geometric objects (say, points in the plane) that we wish
to preprocess into a data structure, so that given any query object Q (say, an axes-parallel rectangle), the subset S ′ ⊆ S
that is contained in Q can be reported efficiently. (Thus, S ′ = S ∩ Q .) The paper by Agarwal and Erickson [2] provides a
comprehensive survey of geometric range searching.

There are situations where it is not sufficient to merely report the objects of S ′; instead, what is desired is a more
informative “summary” of the output, such as an order-statistic on S ′ . For instance, a realtor would be interested in knowing
the average or the median price of homes (the “objects”) in different neighborhoods (the “queries”) of a large city. This can
be accomplished by applying a suitable function, called an aggregation function, on S ′ . Examples of aggregation functions
include count, sum, min, max, mean, median, mode, and top-k that are usually computed on a set of weights defined suitably
on the objects (in the above example, the weights are house prices). Such range-aggregate query problems have been the
subject of much recent research in both the database and the computational geometry communities; see, for instance, [4,9,
12,16,22,24–27].

In this paper, we make further contributions to range-aggregate query processing by considering aggregation functions
that measure the extent or “spread” of the objects in S ′ . These functions include closest pair, diameter (or farthest pair), and
width. Extent measures find applications in collision detection, shape-fitting, clustering, etc. [3]. Often, instead of computing
the measure on the entire set—which can be both expensive and unnecessary—it is more useful to “zoom in” on a region
of interest that is specified by a query range and compute quickly the desired measure only for this region. (For example,
given the instantaneous positions of all aircraft over a busy airport, it is important that an air-traffic controller be able to
determine rapidly the closest pair within any prescribed region of airspace, in order to identify potential collisions.)

A major challenge in working with these aggregation functions is that they are not decomposable efficiently, in the
sense that the answer for S ′ , under one of these functions, cannot be inferred quickly from answers for subsets that form
a partition of S ′ . (For instance, given a partition of S ′ into sets S ′

1 and S ′
2, the closest pair in S ′ cannot be inferred in

sublinear time from the closest pair information for S ′
1 and S ′

2.) Despite this, however, we have been able to obtain space-
and query-time-efficient solutions (either exact or approximate solutions with guaranteed error bounds) to several range-
aggregate extent queries, as summarized in Table 1. Our results are based on a combination of techniques, including the
use of multilevel range trees, Voronoi Diagrams, Euclidean Minimum Spanning Trees, generating sparse representations of
candidate output sets, and establishing proofs of (expected) upper bounds on the sizes of such representations.

Shan et al. [19] were among the first to consider the range-aggregate closest pair problem. For axes-parallel query
rectangles, they gave a solution based on R-trees and showed that this performed well in practice; however, they did not
provide a theoretical analysis of their method. Gupta [10] obtained a solution to this problem in one-dimension (resp.,
two-dimensions), again for axes-parallel query ranges, where the query time was O (1) using O (n) space (resp., O (log3 n)

query time using O (n2 log3 n) space). The two-dimensional result was improved recently by Sharathkumar and Gupta [21]
to O (log3 n) query time using O (n log3 n) space. In [20,21], they also considered a variant (motivated by applications in VLSI
design rule checking [23]), where the goal is to determine if the closest pair in an axes-parallel query rectangle is within
a user-specified tolerance; their approach answered queries in O (log2 n) time using O (n log2+ε n) space, for any constant

Table 1
Summary of results. All results are big-O and, unless noted otherwise, worst-case. Query rectangles are axes-parallel. By “random points” we mean that the
points are chosen independently and uniformly at random in the unit-hypercube. For the result in Section 5, by “partly in” we mean that one point in the
closest pair is in the query and the other is outside. Here k is a tunable integer-valued parameter, 1 � k � n, δ is a real-valued error tolerance parameter
0 < δ < 1, ε > 0 is a real-valued constant, and d � 2 is an integer constant. By “variable δ”, we mean that it is part of the query; otherwise, it is fixed.

Objects Query Aggregation function Query time Space Section

Points in R
2 Rect. Closest pair log2 n n log5 n 2

Random points in R
d

(d � 2)
Hyper-rect. Closest pair log2d n n log3d−2 n (expected) 3

Random points in R
2 Disk Closest pair n2/3+ε (expected) n1+ε (expected) 4

Points in R
d

(d � 2)
Hyper-rect. Closest pair

(“partly in” query)
logd n n logd n 5

Halfspace n1−1/d+ε n1+ε

Ball n1−1/(d+1)+ε n1+ε

Points in R
2 Rect. Farthest pair k log5 n, 1 � k � n (n + (n/k)2) log2 n 6

Points in R
2 Rect. (1 − δ)-farthest pair 1√

δ
log2 n 1√

δ
n logn 7

(1 − δ)-farthest pair;
variable δ

1√
δ

logn + log3 n n log2 n

Points in R
2 Rect. (1 + δ)-width 1√

δ
log3 n 1√

δ
n log2 n 8
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