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a b s t r a c t

Amodified conditionalMetropolis–Hastings sampler for general state spaces is introduced.
Under specified conditions, this modification can lead to substantial gains in statistical ef-
ficiencywhilemaintaining the overall quality of convergence. Results are illustrated in two
settings: a toy bivariate Normalmodel and a Bayesian version of the random effectsmodel.
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1. Introduction

Consider a random variable X = (X1, . . . , Xm) where Xi ∈ Rdi for i = 1, . . . ,m and di ≥ 1. Let X have probability distri-
bution ϖ with support X = X1 × · · · × Xm and associated conditional distributions ϖXi|X−i where X−i = X \ Xi. Further,
with respect to measure µ = µ1 × · · · × µm, suppose that ϖ admits density π(x1, . . . , xm) with associated full conditional
densities π(xi|x−i). When ϖ is intractable, inference regarding X may require Markov chain Monte Carlo (MCMC) meth-
ods. To this end, consider using the conditional Metropolis–Hastings algorithm (CMH) under a random scan to construct a
Markov chain denoted as
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Under a fixed set of probabilities p = (p1, . . . , pm)where 0 < pi < 1 and
m

i=1 pi = 1,Φ moves fromX (i)
= x toX (i+1) byup-

dating a single randomly selectedXi while fixing all others. Specifically, in iteration j+1of the CMH, first draw (Z1, . . . , Zm) ∼

Multinomial(1, p). Then for {i : Zi = 1}, draw x′

i from a proposal density q̃i(x′

i|x) and replace xi with x′

i with acceptance prob-
ability
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where x[i] = (x1, . . . , xi) and x[i]

= (xi, . . . , xm). TheGibbs sampler (GS) is a special case of the CMHwith q̃i(xi|x) = πi(xi|x−i)
for all i when the latter are tractable.

After n iterations, we can estimate the expected value β := Eϖ f =

f (x)ϖ(dx) of some function of interest, f : X → R,

by the Monte Carlo average β̂n :=
1
n

n−1
i=0 f


X (i)

. The level of confidence we can place in β̂n is intimately tied to the rate at
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whichΦ converges toϖ . To this end, assume thatΦ is Harris ergodic (Meyn and Tweedie, 1993) and define n-step transition
kernel Pn(x, A) = Pr


X (i+n)

∈ A X (i)
= x


for x ∈ X, n, i ∈ N, and A ∈ B where B is the Borel σ -algebra associated with

X. Then we say Φ is geometrically ergodic if it converges to ϖ in total variation distance at a geometric rate. That is, there
exist functionM : X → R and constant t ∈ (0, 1) such that

∥Pn(x, ·) − ϖ(·)∥TVD := sup
A∈B

|Pn(x, A) − ϖ(A)| ≤ tnM(x) for all x ∈ X.

In addition to guaranteeing effective simulation results in finite time, geometric ergodicity is a key sufficient condition for
the existence of a Markov chain central limit theorem for β̂n (Jones, 2004).

Inspired by the work of Liu (1996) for the GS on discrete state spaces, we show that a simple modification to the CMH
(hence GS) can lead to significant improvements in the Markov chain efficiency and quality of estimates β̂n. Specifically, we
introduce amodified CMH (MCMH) that increases efficiency by encouragingmovement of X (i+1)

j outside the local neighbor-
hood of X (i)

j , denoted by Bj ⊂ Xj. We show that this modification maintains the overall quality of convergence; geometric
ergodicity of the MCMH guarantees the same for the CMH and, under conditions on Bj, the reverse is also true.

Further, we explore the impact of Bj on theMCMH and compare the empirical performance of the CMH andMCMH in two
different model settings: (1) a bivariate Normal model, and (2) a Bayesian version of the random effects model. The latter is
practically relevant in that inference for this model requires MCMC methods. In both settings, the MCMH with reasonably
sized Bj is significantly more efficient than the CMH in both its movement around state space X and in its estimation of
expected value β . However, there are limits to the MCMH efficiency. Mainly, when Bj are too large, the MCMH requires sig-
nificantly more computational effort and is pushed out to the ‘edges’ of the state space. Thus, in these settings, the MCMH
cannot compete with the CMH.

Our paper is organized as follows. Section 2 introduces the MCMH and compares convergence among the CMH and
MCMH. Section 3 explores these results with applications in two model settings. All proofs are deferred to the Appendix.

2. The modified CMH algorithm

Consider aMarkov chain for target densityπ(x1, . . . , xm)with associated full conditionalsπ(xi|x−i). The transition kernel
of the CMH forπ with the proposal densities q̃i(x′

i|x) and acceptance probabilities α̃i(x′

i|x) outlined above can be expressed as

PCMH(x, A) =

m
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where PCMHi , Markov kernels corresponding to the Xi updates, are defined by
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Ideally, the CMHwill tour all reaches ofXwithout getting stuck for too long in any one ‘‘corner’’. Indeed, we can facilitate
such movement with a simple modification to the CMH algorithm. Letting x denote the current state of the CMH, suppose
that component xi is selected for update and let Bi(xi|x−i) ⊂ Xi be a local neighborhood of xi that could depend on x−i. For ex-
ample, wemight define Bi(xi|x−i) = xi±ε for ε > 0whenXi = R or define Bi(xi|x−i) to be a circle centered at xi with radius
ε when Xi = R2. Then instead of proposing an xi update from q̃(·|x), we can restrict movement to states outside Bi(xi|x−i),
i.e. Bc

i (xi|x−i) = Xi \ Bi(xi|x−i), through a Metropolis–Hastings step as follows. First draw x′

i from the proposal density
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for example, using an accept–reject strategy, and then replacing xi with x′

i with acceptance probability
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Thus, the modified CMH (MCMH) has transition kernel
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for
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Note the dependence of the MCMH on neighborhoods Bi. If Bi(xi|x−i) = ∅ for all i, the MCMH and CMH are equivalent. At
the other extreme, when Bi(xi|x−i) = Xi, the MCMH Markov chain has nowhere to move. Thus we restrict our attention to
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