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a b s t r a c t

A new classifier, QIFC, is proposed based on the quadratic inference function for longitu-
dinal data. Our approach builds a classifier by taking advantage of modeling information
between the longitudinal responses and covariates for each class, and assigns a new sub-
ject to the class with the shortest newly defined distance to the subject. For finite sample
applications, this enables one to overcome the difficulty in estimating covariance matri-
ces while still incorporating correlation into the classifier. The proposed classifier only re-
quires the first moment condition of the model distribution, and hence is able to handle
both continuous and discrete responses. Simulation studies show that QIFC outperforms
competing classifiers, such as the functional data classifier, support vector machine, logis-
tic regression, linear discriminant analysis, the naive Bayes classifier and the decision tree
in various practical settings. Two time-course gene expression data sets are used to assess
the performance of QIFC in applications.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In many longitudinal biomedical experiments, such as the gene expression microarray studies on yeast cells (Spellman
et al., 1998; Eisen et al., 1998) and fruit flies (Arbeitman et al., 2002; Ma et al., 2006), the gene expressions of thousands of
genes are repeatedlymeasured overmultiple time-points. These genes are assumed to be associatedwith a set of pre-defined
biological functions, and it is of scientific interest to identify which genes are associated with which biological functions.
A classifier for longitudinal data is called for to address such a problem. In addition, the sample sizes for most longitudinal
studies are small tomoderate due to the cost and complexity of the longitudinal design. Hence, a desirable longitudinal clas-
sifier should also work effectively for finite sample applications. As high throughput technologies become increasingly cost-
effective, longitudinal studies will be conducted in more research fields, and more features or covariates will be collected at
each time point. Therefore, there is an emerging demand for longitudinal classification tools to mine such high-dimensional
longitudinal data.

Classifications for single point data are well developed, but these methods might not be effective for classifying longi-
tudinal data. For longitudinal data, Choi (1972) proposes a mixed model; Bagui and Mehra (1999) develop a multi-stage
nearest neighbor classification rule; Brown et al. (2000) apply support vector machine (SVM); Liang and Kelemen (2005)
propose regularized neural networks; Lee (2004), Rossi and Villa (2005, 2006) and Park et al. (2008) apply the functional
SVMs;Müller (2005) uses functional principal component scores; Leng andMüller (2006) use logistic regression; De la Cruz-
Mesía et al. (2007) apply semiparametric Bayesian classification based on dependent Dirichlet processes; and Schmah et al.
(2010) compare several classificationmethods for longitudinal fMRI studies and identify the adaptive quadratic discriminant
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function and the support vector machine as the best classifiers. Functional data classifiers (Febrero-Bande and Oviedo de la
Fuente, 2012) are also applicable to most longitudinal data.

We propose a new classification method, QIFC, for longitudinal data based on the quadratic inference function (QIF)
which builds a semi-parametric model. Our approach builds a classifier by taking advantage of modeling information be-
tween responses and covariates of the subjects within each class, and assigns a new subject to the class with the shortest
newly defined distance to the subject. Our approach overcomes the difficulty in estimating covariance matrices as in linear
discriminant analysis (LDA) while still being able to incorporate into the classifier the correlation among multiple observa-
tions on the same subject. We use simulation to compare QIFC to commonly used classifiers including the functional data
classifier, SVM, logistic regression, linear discriminant analysis, the naive Bayes classifier and the decision tree. The proposed
classifier shows advantages for both continuous and discrete response data for various settings. We also provide asymptotic
optimality theory for QIFC. Applications to time-course gene expression data indicate that the generalization error of QIFC
is improved compared to other classifiers when the sample sizes are small to moderate.

The paper is organized as follows. We describe QIFC in Section 2, and provide the theoretical results in Section 3.
Simulation studies and applications follow in Sections 4 and 5, respectively. Section 6 summarizes our results and provides
a brief discussion.

2. QIFC

For longitudinal data, let yi(t) be a response variable and xi(t) be a p × 1 vector of covariates, measured at time t,
t = t1, . . . , tq for subject i, i = 1, . . . ,N . We assume that the model satisfies the first moment model assumption

µi(tj) = E{yi(tj)} = µ{xi(tj)′β}, (1)

where µ(·) is a known inverse link function and β is a p-dimensional parameter vector. The quasi-likelihood equation
(Wedderburn, 1974) for longitudinal data is

N
i=1

µ̇′

iV
−1
i (yi − µi) = 0,

where Vi = Var(yi), yi = (yi(t1), . . . , yi(tq))′, µi = (µit1 , . . . , µitq)
′, and µ̇i = ∂µi/∂β . In practice, Vi is often unknown,

and the empirical estimator of Vi based on sample variance could be unreliable, especially when the sample size is small
relative to the number of variance components in Vi. Liang and Zeger (1986) introduce generalized estimating equations
to substitute Vi by assuming Vi = A1/2

i RA1/2
i , where Ai is a diagonal marginal variance matrix and R is a common working

correlation matrix, which only involves a small number of nuisance parameters. The advantage of the GEE approach is that
the GEE estimator of the regression parameter is consistent, even if the working correlation R is misspecified. However, the
GEE estimator is not efficient within the same class of estimating functions when R is misspecified.

Qu et al. (2000) introduced the quadratic inference function by assuming that the inverse of the working correlation can
be approximated by a linear combination of several basis matrices, that is,

R−1
≈ a1M1 + · · · + amMm,

where Mi’s are symmetric matrices. We observe that the generalized estimating equation is an approximate linear
combination of the components in the estimating functions,

ḡN(β) =
1
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gi(β) =
1
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Hence, the advantage of this approach is that it does not require estimation of linear coefficients ai’s which can be viewed
as nuisance parameters.

Since the dimension of (2) is larger than the number of parameters, we cannot set each component in (2) to be zero to
solve forβ . Insteadwe estimateβ by setting ḡN as close to zero as possible, in the sense ofminimizing the quadratic function,

β̂ = argmin
β

ḡ ′

NΩ−1ḡN ,

where Ω = Var(gi). In practice, Ω is often unknown, but can be estimated consistently by W̄N = N−1N
i=1 gig

′

i . The
quadratic function,

QN(β) = Nḡ ′

NW̄
−1
N ḡN , (3)
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