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a b s t r a c t

Penalties with an ℓ1 norm provide solutions in which some coefficients are exactly
zero and can be used for selecting variables in regression settings. When applied to
the logistic regression model, they also can be used to select variables which affect
classification. We focus on the form of ℓ1 penalties in logistic regression models for
functional data, in particular, their use in classifying functions into three or more groups
while simultaneously selecting variables or classification boundaries.We provide penalties
that appropriately select the variables in functional multiclass logistic regression models.
Analysis of simulation and real data show that the form of the penalty should be selected
in accordance with the purpose of the analysis.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Variable selection is a crucial issue in regression analysis. Several methods have been proposed for the accurate and
effective selection of appropriate variables (see, e.g., Burnham and Anderson, 2002). The lasso by Tibshirani (1996) and its
extensions or refinements (Fan and Li, 2001; Zou and Hastie, 2005; Zou, 2006) provide a unified approach to problems of
estimating and selecting variables, and for this reason they are broadly applied in several fields; an overview is provided
in Hastie et al. (2009). In this paper, we consider the problem of classifying data while simultaneously selecting variables
which affect the classification problem, by applying ℓ1-type penalties to logistic regression models. The logistic regression
model is one of the most useful tools for classifying data, and it does so by providing posterior probabilities which place the
data in the appropriate group (McCullagh and Nelder, 1989).

Logistic regression models that use ℓ1 regularization have been investigated as generalized linear models in Park and
Hastie (2007). They considered binomial logistic regression models, and we consider classifying data into three or more
groups using the multinomial or multiclass logistic regression model. Krishnapuram et al. (2005) and Friedman et al. (2010)
applied ℓ1-type penalties to the model as natural extensions of the binomial logistic regression models. On the other hand,
there are also multiple parameters in each variable of the multinomial logistic regression model and the multivariate linear
model. There have been several studies of the ℓ1-type regularization for the multivariate linear model. Turlach et al. (2005)
proposed a new penalty that can be used to estimate multivariate linear models. They imposed an ℓ1 sum of the maximum
absolute values (ℓ∞ norm) of the coefficients with respect to multiple responses, and they also generalized it to the ℓ1 sum
of ℓq(q ≥ 1) penalties. Following this, Yuan et al. (2007) and Obozinski et al. (2011) let the penalty be denoted by ℓ1/ℓq and
investigated its theoretical properties. It can be viewed as an extension of the group lasso (Yuan and Lin, 2006; Meier et al.,
2008). Furthermore, Obozinski et al. (2010) proposed a new algorithm for estimating a multitask logistic regression model
by using the ℓ1/ℓq regularization for q = 1, 2.
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When the data to be classified have been measured repeatedly over time, they can be represented by a functional form.
Ramsay and Silverman (2005) established this type of analysis and called it functional data analysis (FDA). FDA is one of the
most useful methods for effectively analyzing discretely observed data, and it has received considerable attention in various
fields (Ramsay and Silverman, 2002; Ferraty and Vieu, 2006). The basic idea behind FDA is to express repeatedmeasurement
data for each individual as a smooth function and then to draw information from the collection of these functions. FDA
includes extensions of traditional methods, such as principal component analysis, discriminant analysis, and regression
analysis (James et al., 2000; James, 2002). For regression models, there are various methods, such as a functional version of
logistic regressionmodels (Aguilera and Escabias, 2008; Aguilera-Morillo et al., 2013; Escabias et al., 2004, 2007), generalized
linearmodels (Cardot and Sarda, 2005;Müller and Stadtmüller, 2005; Li et al., 2010; Goldsmith et al., 2011), and generalized
additive models (Reiss and Ogden, 2010). Furthermore, the problem of variable selection for functional regression models
using ℓ1-type regularization is considered in Ferraty et al. (2010); Aneiros et al. (2011); Matsui and Konishi (2011); Zhao
et al. (2012); Gertheiss et al. (2013), and Mingotti et al. (2013). However, these works do not include the multiclass logistic
regression model. For this model, we may fail to select functional variables when we use existing types of penalties, since it
has multiple coefficients for multiple classification boundaries.

In this paper,we consider the problemof using ℓ1-type regularization to select the variables for classifying functional data
by using the multiclass logistic regression model. Data from repeated measurements are represented by basis expansions,
and the functional logistic regression model is estimated by the penalized maximum likelihoodmethod with the help of ℓ1-
type penalties. By extending the ℓ1/ℓq penalties, we propose a new class of penalties, denoted by ℓ1ℓ2/ℓq, for appropriately
estimating and selecting variables or boundaries for the functional multiclass logistic regression model. Since the basis
expansion produces multiple parameters for each variable and each classification boundary, we use the group lasso to treat
them as grouped parameters.We here consider the cases for q = 1 and q = 2.When q = 1, instead of selecting the variables
themselves, we select classification boundaries for each variable; however, when q = 2, we can select the variables that are
given as functions by grouping all the coefficients for each variable. The estimatedmodel is evaluated by a selection criterion,
since its evaluation is a crucial issue. In order to investigate the effectiveness of the proposed penalty, we conducted Monte
Carlo simulations and analyzed actual data.

This paper is organized as follows. Section 2 provides a multiclass logistic regression model for functional data. Section 3
shows a method for estimating and evaluating the model. We apply the proposed method to the analysis of simulated and
real data in Sections 4 and 5, respectively. Concluding remarks are given in Section 6.

2. Multiclass logistic regression model for functional data

Suppose that we have n sets of functional data and a class label {(xα(t), gα); α = 1, . . . , n}, where xα(t) =

(xα1(t), . . . , xαp(t))T are predictors given as functions and gα ∈ {1, . . . , L} are the classes to which xα belongs. In the
classification setting, we apply the Bayes rule, which assigns xα to class gα = l with the maximum posterior probability
given xα , denoted by Pr(gα = l|xα). Then the logistic regressionmodel is given by the log-odds of the posterior probabilities:

log

Pr(gα = l|xα)

Pr(gα = L|xα)


= βl0 +

p
j=1


xαj(t)βlj(t)dt, (1)

whereβl0 is the intercept andβlj(t) are the coefficient functions.We assume that xαj(t) can be expressed by basis expansions
as

xαj(t) =

Mj
m=1

wαjmφjm(t) = wT
αjφj(t), (2)

where φj(t) = (φj1(t), . . . , φjMj(t))
T are vectors of basis functions, such as B-splines or radial basis functions, and wαj =

(wαj1, . . . , wαjMj)
T are coefficient vectors. Since the data are originally observed at discrete time points, we smooth them

with a basis expansion prior to obtaining the functional data xαj(t). In other words,wαj are obtained before constructing the
functional logistic regressionmodel (1). Details of the smoothing method are described in Araki et al. (2009b). Furthermore,
βlj(t) are also expressed by basis expansions

βlj(t) =

Mj
m=1

bljmφjm(t) = bTljφj(t), (3)

where blj = (blj1, . . . , bljMj)
T are vectors of the coefficient parameters.

Using the notation πl(xα; b) = Pr(gα = l|xα), where b = (bT1, . . . , b
T
(L−1))

T and bl = (βl0, bTl1, . . . , b
T
lp)

T since it is
controlled by b, we can express the functional logistic regression model (1) as

log


πl(xα; b)
πL(xα; b)


= βl0 +

p
j=1

wT
αjΦjblj = zTαbl, (4)
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