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a b s t r a c t

The unknown error density of a nonparametric regressionmodel is approximated by amix-
ture of Gaussian densities with means being the individual error realizations and variance
a constant parameter. Such a mixture density has the form of a kernel density estimator of
error realizations. An approximate likelihood and posterior for bandwidth parameters in
the kernel-form error density and the Nadaraya–Watson regression estimator are derived,
and a sampling algorithm is developed. A simulation study shows that when the true error
density is non-Gaussian, the kernel-form error density is often favored against its paramet-
ric counterparts including the correct error density assumption. The proposed approach is
demonstrated through a nonparametric regression model of the Australian All Ordinaries
daily return on the overnight FTSE and S&P 500 returns. With the estimated bandwidths,
the one-day-ahead posterior predictive density of the All Ordinaries return is derived, and
a distribution-free value-at-risk is obtained. The proposed algorithm is also applied to a
nonparametric regression model involved in state-price density estimation based on S&P
500 options data.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A simple and commonly used estimator of the regression function in a nonparametric regression model is the
Nadaraya–Watson (NW) estimator, whose performance is mainly determined by the choice of bandwidths. A large liter-
ature exists on bandwidth selection for the NW estimator, and the most popular approaches are the rule-of-thumb, cross-
validation (CV), plug-in and bootstrappingmethods (see for example, Härdle, 1990; Herrmann et al., 1995; Hall et al., 1995).
Even though the NW estimator does not require an assumption on the analytical form of the error density, it is often of great
interest to investigate the distribution of the response around the estimated mean. Such a distribution is characterized by
the error density, estimation of which is a fundamental issue in statistical inference for any regression model. This issue
was extensively discussed by Efromovich (2005), who developed a nonparametric approach to error-density estimation in
a nonparametric regression model using residuals as proxies of errors.

A simple approach to error density estimation is the kernel density estimator of residuals, whose performance is mainly
determined by the choice of bandwidth. This density estimator depends on residuals fitted through the NW estimator of
the regression function. Moreover, the resulting density estimator of residuals provides no information for the purpose
of choosing bandwidths in the NW regression estimator, although bandwidth selection in this situation depends on the
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error distribution (see for example, Zhang et al., 2009). Therefore, there is a lack of a data-driven procedure for choosing
bandwidths for the two estimators simultaneously. This motivates the study reported in this paper.

Our investigation of error density estimation is also motivated by its practical applications. In financial econometrics, an
important use of the estimated error density in modeling an asset return is to estimate the value-at-risk (VaR). At a given
confidence level 100(1 − α)% with α being a small probability value, the VaR is a threshold loss of an investment on an
asset over a given period of time in the sense that there is a 100α% chance of a loss as great as or greater than the VaR
loss for the given time period. When the density of this asset’s return is obtained, the VaR is defined as the magnitude of
this density’s lower 100α% quantile. The VaR is an important measure of the risk involved in holding the investment and
is used to help manage risk (see Jorion, 1997, among others). In the nonparametric regression model that we consider, any
mis-specification of the error density may produce an inaccurate estimate of the VaR and make it harder to manage the
risk. Therefore, being able to estimate the error density can be just as important as being able to estimate the mean of the
regression model.

Let y denote the response and x = (x1, x2, . . . , xd)′ a set of explanatory variables or regressors. Given observations
(yi, xi), for i = 1, 2, . . . , n, a nonparametric regression model is expressed as

yi = m(xi) + εi, (1)
where εi, for i = 1, 2, . . . , n, are assumed to be independent and identically distributed (iid) with an unknown density
denoted as f (ε). Let the NW estimator of the regression function be denoted as m(x; h) with h a vector of bandwidths. In
this paper, we assume that the unknown f (ε) is approximated by a kernel-form density given by

f (ε; b) =
1
n

n
i=1

1
b
φ


ε − εi

b


, (2)

where φ(·) is the probability density function of the standard Gaussian distribution.
The density function given by (2) is a mixture of n Gaussian densities, and the component densities have a common

standard deviation b and means εi, for i = 1, 2, . . . , n. From the viewpoint of kernel smoothing, this error density is of the
form of a kernel density estimator of the errors (rather than residuals) with φ(·) the kernel function and b the bandwidth.
Consequently, it is reasonable to expect that f (ε; b) can approximate f (ε)wellwhen f (ε) is unknown.We call (2) the kernel-
form error density, and b is referred to as the bandwidth.

We aim to develop a sampling algorithm, through which the bandwidths, h and b, can be simultaneously estimated.
We treat bandwidths as parameters and conduct our investigation in a parametric way although the underlying model is
nonparametric. Our main contribution is to construct an approximate likelihood and therefore, the posterior of bandwidth
parameters for the nonparametric regressionmodel with its unknown error density approximated by the kernel-form error
density given by (2).

When the iid errors follow a Gaussian distribution, Zhang et al. (2009) derived an approximate posterior of h for given
y = (y1, y2, . . . , yn)′, where the likelihood of y for given h is the product of the Gaussian densities of yi with its mean
approximated by the leave-one-out NWestimator denoted asmi(xi; h), for i = 1, 2, . . . , n. The error density can be assumed
to be of other parametric forms such as a mixture of Gaussian densities. However, any parametric assumption of the error
density is likely to be wrong, and subsequent inference might be misleading. The contribution of this paper is not only a
relaxation of the Gaussian error assumption of Zhang et al. (2009), but also a novel sampling algorithm under a flexible
error density in regression models.

There is a growing literature on the estimation of the error density in a nonparametric regression model. Efromovich
(2005) presented the so-called Efromovich–Pinsker estimator of the error density and showed that this estimator is asymp-
totically as accurate as an oracle that knows the underlying errors. Cheng (2004) showed that the kernel density estimator
of residuals is uniformly, weakly and strongly consistent. When the regression function is estimated by the NW estimator
and the error density is estimated by the kernel estimator of residuals, Samb (2011) proved the asymptotic normality of the
bandwidths in both estimators and derived the optimal convergence rates of the two types of bandwidths. Linton and Xiao
(2007) proposed a kernel estimator based on residuals obtained through local polynomial fitting of the unknown regression
function. They showed that their estimator is adaptive and concluded that the adaptive estimation is possible in local poly-
nomial fitting, which includes the NW estimator as a special case. In a class of nonlinear regression models, Yuan and de
Gooijer (2007) constructed an approximate likelihood through the kernel density estimator of pre-fitted residuals with its
bandwidth pre-chosen by the rule-of-thumb. They proved that under some regularity conditions, the resulting maximum
likelihood estimates of parameters are consistent, asymptotically normal and efficient. Jaki andWest (2008) proposed using
the kernel density estimator of the pre-fitted residuals to construct an approximate likelihood, which they called the kernel
likelihood.

In all these investigations, residuals were commonly used as proxies of errors, and the bandwidth for the kernel den-
sity estimator of residuals was pre-chosen. To our knowledge, there is no method that can simultaneously estimate the
bandwidths for the NW estimator of the regression function and the kernel-form error density.

Our proposed kernel-form error density is robust in terms of different specifications of the error density in a nonpara-
metric regressionmodel. In order to understand the relative gains and losses that result from this robust assumption against
other parametric assumptions, we conduct simulation studies by simulating samples through a nonlinear regression func-
tion,where the error densities are respectively, theGaussian and severalmixture densities of twoGaussians.We find that the
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