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Abstract

Flexible modelling of random effects in linear mixed models has attracted some attention recently. In this paper, we propose the use
of finite Gaussian mixtures as in Verbeke and Lesaffre [A linear mixed model with heterogeneity in the random-effects population,
J. Amu. Statist. Assoc. 91, 217–221]. We adopt a fully Bayesian hierarchical framework that allows simultaneous estimation of
the number of mixture components together with other model parameters. The technique employed is the Reversible Jump MCMC
algorithm (Richardson and Green [On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion).
J. Roy. Statist. Soc. Ser. B 59, 731–792]). This approach has the advantage of producing a direct comparison of different mixture
models through posterior probabilities from a single run of the MCMC algorithm. Moreover, the Bayesian setting allows us to
integrate over different mixture models to obtain a more robust density estimate of the random effects. We focus on linear mixed
models with a random intercept and a random slope. Numerical results on simulated data sets and a real data set are provided to
demonstrate the usefulness of the proposed method.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In longitudinal studies, measurements are obtained repeatedly from individual subjects. We are interested in effects
that, we believe, are common to all individuals and also effects that are different among individuals. A commonly
used model to capture these among-subject variation is mixed effects model (Laird and Ware, 1982). Specifically, we
assume that the data yij , for i = 1, . . . , c and j = 1, . . . , ni, where c is the number of subjects and ni is the number of
measurements of the ith subject, are independently drawn from densities f (yij ; �i , �). The unknown random parameters
�i represent the effects of some covariates which vary among subjects and � the effects of some covariates that are the
same across subjects.

Traditionally, the �i’s are assumed to follow a multivariate Gaussian distribution for mathematical convenience.
Although some studies suggest that inference on fixed effects may be robust to non-normality of random effects (Butler
and Louis, 1992; Verbeke and Lesaffre, 1997), there are also findings of inconsistencies in fixed and random effects
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estimations under misspecification of random effects distributions (Neuhaus et al., 1992). Moreover, modelling the
random effects with less restrictive distributional assumptions may provide important insights. A skewed or even
multimodal random effect may indicate exclusion of important factors and suggest improvements in model settings.
Therefore, substantial efforts have been made to introduce nonparametric or semi-parametric estimations of the random
effects. Examples include the discrete nonparametric MLE (Laird, 1978; Lindsay, 1983), the smooth nonparametric
MLE (Magder and Zeger, 1996), predictive recursive estimation (Tao et al., 1999), mixture of normals via EM algorithm
(Verbeke and Lesaffre, 1996), etc. More recently, Zhang and Davidian (2001) proposed semi-parametric estimation
using a class of densities introduced in Gallant and Nychka (1987). Ghidey et al. (2004) used a penalised Gaussian
mixture to model the random effects. In their approach, they did not estimate the number of mixture components.

For most of the existing methods, the complexity of the model for the random effects is controlled by some tuning
parameters, for example, the penalty coefficient � in Ghidey et al. (2004), the tuning parameter K in Zhang and Davidian
(2001) and the number of mixture components in Verbeke and Lesaffre (1996). Usually, criteria like Akaike Information
Criterion (AIC) or Schwartz Information Criterion (BIC) are used for such decisions. Although an “optimal” model
under specific criteria can be chosen from several candidates, the comparisons often lack intuitive meanings. Sole use
of the “optimal” model may also lead to the concern of model uncertainties.

In this paper, we propose an approach that has advantage over existing methods in these aspects. We focus on linear
mixed models under the fully Bayesian hierarchical framework. Similar to Verbeke and Lesaffre (1996), we model
the random effects through finite Gaussian mixtures. However, we do not fix the number of mixture components but
estimate that along with other model parameters. This is made possible by adopting the Reversible Jump MCMC
algorithm developed by Richardson and Green (1997) and Green (1995). The same idea has been developed in many
areas such as the analysis of times of coal mining disasters (Green, 1995), disease mapping (Green and Richardson,
2002), hidden Markov models (Robert et al., 2000) and measurement error models (Richardson et al., 2002).

This approach allows us to perform estimations for mixture models with different number of components in a single
MCMC run. Moreover, the fully Bayesian setting provides us posterior probability estimates of the number of mixture
components that enable us to make coherent and intuitive comparisons of different mixture models. Besides picking
the mixture model with highest posterior probability, we can also integrate over all mixture models to obtain a density
estimate of the random effects that is more robust to model uncertainties.

Watier et al. (1998) apply the algorithm of Richardson and Green (1997) to random effects models. Unfortunately, the
one-dimensional algorithm can only be applied to models with a random intercept only. In many applications such as
repeated measurement problems, it is natural to consider models with random intercepts and random slopes. Therefore
an extension of the RJMCMC algorithm to multivariate setting is needed and it turns out to be quite challenging. A
general multivariate extentsion can be found in Ho (2005). We remark that another possible approach to fully Bayesian
analysis of the problem is the nonparametric Bayesian approach (e.g. Van Der Merwe and Pretorius, 2003) making use
of Dirichlet process priors (e.g. Escobar, 1994; MacEachern, 1994; West, 1992).

In this paper, we provide a self-contained treatment of the RJMCMC algorithm for linear mixed models with a
random intercept and a random slope. After a brief introduction of our method, we describe the Bayesian hierarchical
model setting in Section 2. In Section 3, we give some details of the RJMCMC algorithm for linear mixed models
with a random intercept and a random slope. In Sections 4 and 5, we perform studies on simulated data and real data,
respectively. We end by giving some concluding remarks in Section 6.

2. Bayesian hierarchical model

2.1. Gaussian mixture random effects

We consider the following linear mixed effects model:

yi = Zi�i + Xi� + �i (i = 1, . . . , c), (1)

where yi is an ni ×1 vector of responses from the ith subject , � is a q ×1 vector of fixed effects, Zi and Xi are covariate
matrices and �i is an ni × 1 vector of errors following N(0, �2I). Random effects of the ith subject are modelled by a
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