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We study a first-order method to find the minimum cross-sectional area ellipsoidal cylinder
containing a finite set of points. This problem arises in optimal design in statistics when
one is interested in a subset of the parameters. We provide convex formulations of this
problem and its dual, and analyze a method based on the Frank–Wolfe algorithm for their
solution. Under suitable conditions on the behavior of the method, we establish global
and local convergence properties. However, difficulties may arise when a certain submatrix
loses rank, and we describe a technique for dealing with this situation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

We study the problem of finding an ellipsoidal cylinder containing a finite set of points in R
n , such that its cross-section

with a fixed k-dimensional subspace has minimum area. This is a generalization of the minimum-volume enclosing ellipsoid
(MVEE) problem, which has been much studied, with applications in data analysis and (via its dual) the D-optimal design
problem in statistics.

The minimum-area enclosing ellipsoidal cylinder (MAEC) problem has also been widely studied, mainly because its dual
is another optimal design problem in statistics, where now one is interested in estimating just k out of n parameters in a
regression problem by choosing the design points optimally in some sense. See Fedorov [8], Silvey and Titterington [17],
Atwood [2,3], and Pukelsheim [15] for more details.

Another application of the problem arises when studying possible collisions of bodies in R
3. Suppose for a given body we

are given a large sample of time–space readings (ti; xi). Then by computing a minimum-area enclosing ellipsoidal cylinder
for these points (n = 4,k = 3), we obtain a conservative model for the body of an ellipsoid moving in a uniform direction
at uniform speed. If we obtain such models for two bodies, a sufficient condition for them not colliding is that the cor-
responding ellipsoidal cylinders do not intersect, and this can be checked after a transformation of variables by solving a
single convex quadratic trust-region subproblem in R

3, which can be done efficiently [6,18]. If the bodies are moving under
the influence of a gravitational field, a tighter model can be achieved by approximating the movement of the bodies by
parabolas, which can easily be performed by replacing x by x − (1/2)gt2, where g ∈ R

3 is a vector corresponding to the
gravitational field, and then proceeding as above.
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Our interest in the MAEC problem is mainly algorithmic: we study a first-order method based on the Frank–Wolfe
method [9] with Wolfe’s away steps [20], which was introduced in the context of optimal design by Atwood [3]. The Frank–
Wolfe method is also known as the conditional gradient method — see Polyak [14] and Bertsekas [4]. However, no detailed
analysis of this method has been performed, and in certain cases it breaks down unless modified to keep an appropriate
matrix positive definite. The reason for our interest in this algorithm is that each iteration is very cheap and the memory
requirements are minimal. By contrast, interior-point methods may be more efficient for small-scale problems, but quickly
run into memory difficulties with large-scale problems, as seen in the MVEE case in [1]. Even general first-order methods
can be expensive, as discussed in Section 3.1 below.

We show that under reasonable conditions on the iterates produced by the algorithm, global complexity estimates and
local convergence properties can be established. These conditions require that a certain principal submatrix of a positive
semidefinite matrix produced by the algorithm remain positive definite. Global convergence under suitable conditions (en-
suring the positive definiteness of this submatrix) was established by Atwood [3], while complexity estimates of related
methods (usually omitting the away steps and assuming a Lipschitz continuous gradient of the objective function) were
given by Levitin and Polyak [13] and Wolfe [20]; see also [14,4]. Linear convergence of the Frank–Wolfe method with away
steps was proved by Guélat and Marcotte [10] under strong conditions, and for the MVEE problem (which does not satisfy
these conditions) by Ahipaşaoğlu, Sun, and Todd [1], but the present problem is more general still.

We also provide a technique that allows the iterations to proceed when rank deficiency occurs; although we have no
guarantee of convergence in this case, the method appears to work in practice. Finally, some computational results for large
random problems are given.

The paper is organized as follows. In the next section, we state simple convex formulations of the MAEC problem and
its dual. Although previous papers have included formulations with some convexity properties, they have not been fully
convex. Section 3 describes the basic algorithm, which was introduced by Atwood [3] in 1973. We prove global and local
convergence results in Section 4. The case of rank-deficiency of a critical submatrix is discussed in Section 5, and Section 6
contains the results of our computational study. We conclude in Section 7 with some final remarks. A short list of notation
is included in Appendix A for quick reference. The details of some of the proofs are presented in Appendices B–D.

2. Problem formulation and duality

In this section we provide simple convex formulations of the MAEC problem and its dual. Previous formulations, such as
that in Silvey and Titterington [17], have not been convex in all the variables (see problem (P′) below), although they have
some convexity properties, and the dual problem involved a Schur complement rather than our simpler formulation (D).

We also relate these formulations to earlier ones and prove duality results. The section ends by defining notions of
approximate optimality, which will be used in our algorithms.

2.1. Problem definition, convex formulation

Suppose we are given a matrix X = [x1, x2, . . . , xm] ∈ R
n×m whose columns, the points x1, . . . , xm , span R

n . Let X = [ Z
Y

]
be a partition of X , where Z ∈ R

(n−k)×m and Y ∈ R
k×m . If H ′ is a symmetric matrix of order k that is positive definite (we

write H ′ � 0) and E is a matrix of order k × (n − k), then the set

C
(
0; E; H ′) := {[z; y]: z ∈ R

n−k, y ∈ R
k, (y + Ez)T H ′(y + Ez) � k

}
is a central (i.e., centered at the origin) ellipsoidal cylinder whose intersection with the subspace

Π := {[z; y] ∈ R
n: z ∈ R

n−k, y ∈ R
k, z = 0

}
has volume (det H ′)−1/2 times that of a Euclidean ball in R

k of radius
√

k. H ′ determines the shape of the cross-section
and E the “directions of the axes” of the cylinder. Observe that the cylinder can also be written as a “degenerate” ellipsoid:
indeed

C
(
0; E; H ′) = {

x ∈ R
n: xT Hx � k

}
, (2.1)

where H is positive semidefinite with rank k:

H :=
[

E T H ′E E T H ′
H ′E H ′

]
, using the relation y + Ez = [E, I]( z y ).

Hence, finding a central ellipsoidal cylinder, which contains the columns of X and has minimum-volume (area) intersection
with Π , amounts to solving

min
H ′�0,E

f̄ (H ′, E) := − ln det H ′

(yi + Ezi)
T H ′(yi + Ezi) � k, i = 1, . . . ,m, (P′)
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