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a b s t r a c t

Markovian binary trees forma class of continuous-time branching processeswhere the life-
time and reproduction epochs of individuals are controlled by an underlying Markov pro-
cess. An Expectation–Maximization (EM) algorithm is developed to estimate the parameters
of the Markov process from the continuous observation of some populations, first with in-
formation about which individuals reproduce or die (the distinguishable case), and second
without this information (the indistinguishable case). The performance of the EM algorithm
is illustrated with some numerical examples. Fits resulting from the distinguishable case
are shown not to be significantly better than fits resulting from the indistinguishable case
using some goodness of fit measures.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A Markovian binary tree (MBT ) is a continuous-time branching process in which individuals’ lifetime and reproduction
times are controlled by an underlying Markov phase process called a transient Markovian arrival process (MAP). The
underlying phases may be purely fictitious, or may have some physical interpretation such as the actual age of an individual
(see Hautphenne and Latouche, 2012), or some physiological state of the individual (see Lin and Liu, 2007 and Caswell,
2001). Reproduction and death rates usually depend on the current phase of the individual, and newborns start in a phase
that may depend on their parent’s phase at the time of birth. This allows for some dependence between the parent’s and
child’s lifetimes. From an observer’s point of view, the phase transitions are hidden, only the birth and death events are
visible. For the sake of simplicity we assume that individuals give birth to one child at a time.

Since MAPs are dense in the class of counting processes (see Asmussen and Koole, 1993), MBTs offer considerable
modeling versatility. However, they can only be applied to real systems if there is some reliablemethod ofmodel fitting. That
is, we need to be able to estimate the parameters of theMBT frommeasurements taken from real populations. In our case, the
parameters that need to be estimated are the phase transition rates associatedwith the underlyingMarkov process when no
birth or death occurs, and those transition rates when a birth or a death occurs. The problem is that these phase transitions
are not observed, so we have a problem of estimation from incomplete data. For these types of statistical problems, the
Expectation–Maximization (EM) algorithm has proven to be a good means of estimating the maximum likelihood estimator.

Since the 1970s a number of authors have worked on parameter estimation for branching processes, although very few
have considered estimation with incomplete data. They have instead focused mainly on the properties of the maximum
likelihood estimator for the offspring distribution andmean of a Galton–Watson branching process, and the distribution and
mean of the number of immigrantswhen immigration is allowed; to cite but a few, see for instance Dion (1974, 1975), Heyde
and Seneta (1972), Heyde (1974, 1975), Athreya and Keiding (1977), and Sankaranarayanan (1989). Veen and Schoenberg
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Fig. 1. Example of a trajectory of an MBT. Each plain horizontal line represents the lifetime of an individual, and each dotted vertical line represents the
birth of a new individual. Individuals’ labels are updated at each population size change.

(2008) used the EM algorithm to estimate the parameters of a subcritical branching process with immigration applied to
seismology. In their case, the information about which earthquake event triggers each other event is unobservable and can
only be described probabilistically.

In this paper we develop an EM algorithm for the parameter estimation of an MBT from the continuous monitoring of
a population during a fixed time interval. The most complete information we could expect to record from one observation
consists of the times at which the size of the population changes due to a birth or a death, the type of event (birth or death)
associated with each size change, and the identity of the individual responsible for the size change (that is, the parent for a
birth, or the individual who died) if individuals are labeled and hence distinguishable. If individuals are not labeled then they
are indistinguishable. We apply the EM algorithm to both the distinguishable and indistinguishable cases. It turns out that
the parameter estimation is not significantly better in the distinguishable casewhen compared to the indistinguishable case.

The paper is organized as follows. In Section 2 we formally defineMBTs and give some background to the EM algorithm.
Section 3 contains a detailed description of the EM algorithm for MBTs, first applied when individuals are distinguishable,
and then when individuals are indistinguishable. In Section 4 we present some numerical examples and demonstrate that
there is no statistically significant advantage in having distinguishable individuals. The paper concludeswith somedirections
for further research.

2. Background

2.1. Markovian binary trees

The underlying process of a Markovian binary tree (MBT ) is a Markovian counting process called a transient Markovian
arrival process (MAP). This transientMAP represents themanner in which an individual passes through different stages in its
life, until it eventually dies, and it counts how many times the individual gives birth to children (each birth corresponding
to an arrival in the MAP). Whenever a child is born, its life follows a random path which is an independent replica of its
parent’sMAP.

Transient MAPs are described in Latouche et al. (2003). They are two-dimensional Markovian processes {(M(t), ϕ(t)) :

t ∈ R+
} on the state space N × {0, 1, . . . , n}, where n is finite. The states (k, 0) are absorbing for all k ≥ 0; the other states

are transient. The process M(t) counts the number of arrivals in [0, t] and is called the level process. The process ϕ(t) is a
continuous-time Markov chain, called the phase process.

A transient MAP is characterized by two n × n rate matrices D0 and D1 and a nonnegative n × 1 rate vector d. Feasible
transitions are from (k, i) to (k, j), for k ≥ 0 and 1 ≤ i ≠ j ≤ n at the rate (D0)ij, or from (k, i) to (k + 1, j) for 1 ≤ i, j ≤ n
at the rate (D1)ij, or from (k, i) to (k, 0) at rate di. The first transitions (at rate (D0)ij) are hidden: the phase of the individual
changes but not the count. The second transitions (at rate (D1)ij) are observable: a birth (arrival) is recorded, at which time
the state of the individual may or may not change. Finally, the third transitions (at rate di) indicate the termination of the
individual’s life.

ThematrixD1 and the vector d are nonnegative,D0 has nonnegative off-diagonal elements and strictly negative elements
on the diagonal such that D0 1 + D1 1 + d = 0, where 1 is an n × 1 vector of ones. One also defines the initial probability
vector α = (αi)1≤i≤n, and we assume that α1 = 1, so that ϕ(0) ≠ 0 a.s.

MBTs are continuous-time branching processes described by random collections of independent transient MAPs with
the same dynamics. One starts at time 0 with one individual controlled by aMAP with parameters (α,D0,D1, d). At the first
birth, a new independent MAP appears and begins to evolve, while the parent MAP continues, possibly giving birth again,
until it eventually makes a transition to its absorbing phase and dies; at that time it is removed from the system. ChildMAPs
themselves may spawn newMAPs. See Fig. 1 for an example of a trajectory of anMBT.

Each newborn starts in a phase that may depend on its parent’s phase transition at the time of birth. The n2
× n matrix

P specifies how the initial phase of a child MAP is chosen: Pj,ik is the conditional probability that a child starts its life in
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