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a b s t r a c t

An expectation–maximization (EM) algorithm for factor analysis parameter estimation
when observations are missing is developed. In contrast to existing EM algorithms for this
problem, the algorithmhere is developed assuming themissing observations are not part of
the complete data in the EM formulation. The resulting algorithm provides increased com-
putational efficiency through sparse matrix operations. The algorithm is demonstrated on
two sparse, high-dimensional data sets that are prohibitively large for existing algorithms:
the Netflix movie recommendation data set and the Yahoo! musical item data set. The re-
sulting factor models are applied to predict missing values using conditional mean estima-
tion, achieving root mean square errors of 0.9001 and 24.08 on the Netflix and Yahoo! data
sets, respectively.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider factor analysis parameter estimation from incomplete data. Even with complete data, explicit
maximum likelihood factor analysis parameter estimation is generally not possible. Expectation–maximization (EM) algo-
rithms developed by Rubin and Thayer (1982), Little and Rubin (2002) and Liu and Rubin (1998) are in widespread use (see,
e.g., Zhao et al., 2008, and references therein). When data is incomplete, EM algorithms developed by Jamshidian (1997), Liu
and Rubin (1998), and Little and Rubin (2002, p. 235) can be applied. These algorithms require non-sparsematrix operations
on the full dimensionality of the data.

Here we develop an EM approach for estimation with incomplete data that has substantial computation advantages
compared to existing EMapproaches for incomplete data estimation. Existing EMapproaches have beendeveloped assuming
missing observations are part of the complete data within the EM formulation. The choice of what constitutes complete
data within an EM formulation is arbitrary and different choices generally lead to different algorithms. The algorithm here,
developed assuming missing observations are not part of the EM complete data, consists of equations involving sparse
matrices. The sparsity is straightforwardly exploited to yield substantial computational benefits, particularly for sparse,
high-dimensional data.

The algorithm here was applied to factor analysis estimation using two sparse, high-dimensional data sets: the Ya-
hoo! musical preference data set, (see, e.g., Jahrer and Töscher, 2011), and the Netflix movie recommendation data
set, (see Bennett and Lanning, 2007). The smaller Netflix data set contains ratings of over 17,000 movies from over 400,000
users. Users rated on average less than 220 movies each. Applying any of the existing factor analysis EM algorithms to this
data would require matrix operations on vectors of a dimension over 17,000. The required computation for this data set,
and for the larger Yahoo! data set, would be too high for the computing resources available to this study.
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2. Model specification

Let Zt denote a k-dimensional Gaussian randomvector representing observations from the tth individual, t = 1, 2, . . . , n.
In the exploratory factor analysis model, Zt is governed by

Zt = λXt + µ + Wt (1)

whereµ is a k-dimensional deterministic mean vector, λ is a k×p deterministic matrix referred to as the coefficient matrix,
Xt is a p-dimensional Gaussian random vector constituting the latent factors, and Wt is a k-dimensional Gaussian random
vector. Let N (µ, R) denote the Gaussian distribution with mean µ and covariance R. We assume that {Xt} is an iid Gaussian
process with Xt ∼ N (0, Ip), where Ip is the p × p identity matrix. We assume that {Wt} is an iid Gaussian process with
Wt ∼ N (0, Σ)whereΣ is a k×k diagonalmatrix.We assume that Xt andWs are independent for all t and s. Hence {Zt} is an
iid process with Zt ∼ N (µ, R)where R = λλ′

+Σ . We denote the parameter of the factor analysis model as φ = {µ, λ, Σ}.
With these assumptions, the model (1) is un-identifiable, (see Anderson, 1984, Section 14.2.3). The un-identifiability

here is of a specific type, known as spherical un-identifiability, that is generally tolerable in applications. Less restrictive
assumptions on Xt and Wt can lead to problematic types of un-identifiability. The model can be made identifiable with
additional constraints. The resulting model, however, is generally less tractable than the model considered here. If the
covariance of Xt is not diagonal or λ has elements that are known to be zero the resulting model is sometimes referred
to as confirmatory factor analysis, (see Rubin and Thayer, 1982).

Assume now that for each t only 0 < kt ≤ k elements of Zt are observed. Let Yt denote a kt-dimensional sub-vector of Zt
representing the observed values of Zt . Let Ht be a deterministic kt × k sub-matrix of Ik where the rows of Ik corresponding
to the indices of the missing ratings of the tth user have been deleted. Thus Yt = HtZt and

Yt = HtλXt + Htµ + HtWt . (2)

For notational convenience we write µt = Htµ, Rt = HtRH ′
t , Σt = HtΣH ′

t and λt = Htλ. Thus Yt ∼ N (µt , Rt) where
Rt = Σt + λtλ

′
t . Note µt and Rt are a sub-vector and a principal sub-matrix of µ and R respectively. If R is a symmetric and

positive semi-definite (psd) matrix then all of its principal sub-matrices are also symmetric and psd (Golub and VanLoan,
1994, Corollary 4.2.2). Thus all such Rt are valid covariance matrices.

Assumptions on the distribution of indices of missing values of Zt are discussed in detail by Little and Rubin (2002). If we
were to assume these indices weremissing completely at random, rather than deterministic, equations in the corresponding
derivation would generally require conditioning on a now-randomHt . The resulting approach would otherwise be the same
as that derived here.

Independence of {Yt} follows from the independence of {Zt}, but {Yt} are not in general iid. Let Y n
= {Y1, . . . , Yn} and let

yn = {y1, . . . , yn} denote a realization of Y n. The probability density function (pdf) of Y n is given by

p(yn; φ) =

n
t=1

exp

−(yt − µt)

′R−1
t (yt − µt)/2


(2π)kt/2|Rt |

1/2
. (3)

In the subsequent derivations we will have need for the following conditional pdfs. Let xt be a realization of Xt . The
conditional pdf of Yt given {Xt = xt} is given by

p(yt |Xt = xt; φ) = N (µt + λtxt , Σt). (4)

The conditional pdf of Xt given {Yt = yt} is obtained using well-known formulae for conditional Gaussian distributions (see,
e.g., Anderson, 1984, Th. 2.5.1) and is given by

p(xt |Yt = yt; φ) = N (X̂t ,Qt) (5)

where

X̂t = E{Xt |Yt = yt; φ}

= λ′

tR
−1
t (yt − µt) (6)

and

Qt = E{(Xt − X̂t)(Xt − X̂t)
′
|Yt = yt; φ}

= Ip − λ′

tR
−1
t λt . (7)

3. Model estimation

We aim for a maximum likelihood estimate φ̂ such that

φ̂ = argmax
φ

log p(yn; φ). (8)
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