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a b s t r a c t

In this paper, we consider the problem of detecting edges in a Gaussian graphical model.
The problem is equivalent to the identification of non-zero entries of the concentration
matrix of a normally distributed random vector. Following the methodology initiated in
Meinshausen and Bühlmann (2006), we tackle the problem through regression models
where each component of the random vector is regressed on the remaining components.
We adapt a method called SLasso cum EBIC (sequential LASSO cum extended Bayesian
information criterion) recently developed in Luo and Chen (2011) for feature selection in
sparse regressionmodels to suit the special nature of the concentrationmatrix, andpropose
two approaches, dubbed SR-SLasso and JR-SLasso, for the identification of non-zero entries
of the concentration matrix. Comprehensive numerical studies are conducted to compare
the proposed approaches with other available competing methods. The numerical studies
demonstrate that the proposed approaches are more accurate than the other methods for
the identification of non-zero entries of the concentration matrix.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Ever since the publication of the paper by Dempster (1972), there has been a considerable literature on the identification
of non-zero entries in a concentration matrix, the inverse of the covariance matrix of a random vector. A non-zero entry in
the concentration matrix corresponds to two components that have a non-zero partial correlation, i.e., they are correlated
conditioning on all the other components. The partial correlation is an important aspect of the inter-relationship among
the components of a network. The investigation of such inter-relationships is of great scientific importance. For example,
in studies of complex diseases, the exploration of the inter-relationship among the responsible genes is crucial for the
understanding of the disease pathologies.

A concentrationmatrix is closely related to an undirected graphical model. An undirected graphical model is specified by
a vertex set V and an edge set E, and is denoted by G = (V , E). The vertex set V represents a collection of random variables
{Y1, . . . , Yp}. The edge set E describes the inter-relationship among the random variables: there is an edge connecting
vertices Yi and Yj if they are dependent conditioning on all the remaining variables. Suppose that Y = (Y1, . . . , Yp) follows
a multivariate normal distribution with concentration matrix Ω = (Ωij). Then, there is an edge between Yi and Yj if and
only ifΩij = Ωji ≠ 0. Thus, the detection of edges of G is equivalent to the identification of non-zero entries ofΩ . A more
general problem is the estimation ofΩ . In this paper, we focus only on the detection of non-zero entries ofΩ .

There are two major methodologies for the identification and estimation of the non-zero entries of a concentration ma-
trix. The first methodology, whichwas initiated inMeinshausen and Bühlmann (2006), is based on the relationship between

∗ Corresponding author. Tel.: +86 21 54743151 2304.
E-mail addresses: sluo2012@gmail.com (S. Luo), stachenz@nus.edu.sg (Z. Chen).
URL: http://www.stat.nus.edu.sg/∼stachenz/ (Z. Chen).

1 Contributing author.

0167-9473/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.csda.2013.09.002

http://dx.doi.org/10.1016/j.csda.2013.09.002
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2013.09.002&domain=pdf
mailto:sluo2012@gmail.com
mailto:stachenz@nus.edu.sg
http://www.stat.nus.edu.sg/~stachenz/
http://www.stat.nus.edu.sg/~stachenz/
http://www.stat.nus.edu.sg/~stachenz/
http://www.stat.nus.edu.sg/~stachenz/
http://www.stat.nus.edu.sg/~stachenz/
http://www.stat.nus.edu.sg/~stachenz/
http://www.stat.nus.edu.sg/~stachenz/
http://dx.doi.org/10.1016/j.csda.2013.09.002


S. Luo, Z. Chen / Computational Statistics and Data Analysis 70 (2014) 138–152 139

entries of Ω and the coefficients of p regression models where each component of Y is regressed on the remaining p − 1
components. A non-zero entry of Ω corresponds to a non-zero regression coefficient in the regression models. The detec-
tion and estimation of non-zero entries ofΩ are then boiled down to the selection and estimation of non-zero coefficients
in p regression models. Various methods for sparse high-dimensional regression models have been used to deal with this
problem. The p regression models are handled either separately or simultaneously. The Lasso is used in Meinshausen and
Bühlmann (2006) for each of the models, and an edge between two vertices is claimed existent if at least one of the associ-
ated coefficients in the two related models is estimated non-zero (or, alternatively, if both of the coefficients are estimated
non-zero). The Dantzig selector is applied in Yuan (2010) to each of the models, and then a symmetrization step is called to
obtain the estimated concentration matrix as the symmetric matrix closest to the estimated coefficient matrix. The scaled
Lasso is used in Sun and Zhang (2012), and a similar symmetrization step is applied to get the final estimate of the concen-
tration matrix. Recognizing that the separate treatment of each regression model might lose useful information, a method
called sparse partial correlation estimation (SPACE) was proposed in Peng et al. (2009). SPACE treats the p regressionmodels
simultaneously by using an essentially weighted Lasso approach. The second methodology is the direct regularization on
the entries ofΩ based on their profile likelihood function with various penalty functions. The L1-penalty is imposed on the
entries of Ω in Friedman et al. (2008), and the resultant approach is dubbed graphical Lasso (GLasso). A variant of GLasso
is considered in Ravikumar et al. (2011). Instead of the L1-penalty, the SCAD penalty is used in Fan et al. (2009). We refer to
this approach as G-Scad. The adaptive Lasso approach applied to the profile likelihood ofΩ is studied in Zhou et al. (2009).
Regularization with a general penalty function is studied in Lam and Fan (2009). It is worth noting that a method called
Clime, which is different methodologically from the above approaches, is proposed in Cai et al. (2011). Clime estimates the
concentration matrix by minimizing ∥Ω∥1 subject to ∥ΣnΩ − I∥∞ ≤ λ, where Σn is the sample covariance matrix, λ is a
regularization parameter, and ∥ · ∥1 and ∥ · ∥∞ are element-wise L1 and L∞ norms, respectively.

The methods mentioned above all have certain nice theoretical properties under different conditions. The salient one is
the so-called oracle property. One aspect of the oracle property is that, asymptotically, the non-zero and zero entries ofΩwill
be estimated as non-zero and zero entries exactly. This aspect is also referred to as selection consistency. The other aspect is
that the estimation can achieve the same accuracy as that if the zero entrieswere known in advance. However, the realization
of this oracle property depends on the proper choice of a regularization parameter λwhich is involved in all the methods. In
practice, the parameter is usually chosen by evaluating a certainmodel selection criterion at regularly spaced points in a cer-
tain range ofλ. The determination of the range and the density of the points affects not only the computation amount but also
the accuracy of the choice. There are no theoretical results at all on how such a chosen value of λ is related to the theoretical
one required for the oracle property. In other words, in practice, the realization of the oracle property is not guaranteed.

Recently, a sequential approach for sparse high-dimensional regression models, called SLasso cum EBIC, was developed
in Luo and Chen (2011). This approach solves a sequence of partially penalized least squares problems. At each step, the
parameters of the features already selected in earlier steps are not penalized, and the penalty parameter is tuned to the
largest while still allowing some penalized parameters to be estimated non-zero. At each step, the least squares model con-
sisting of all the features selected so far is evaluated by a model selection criterion called EBIC. The EBIC serves as a stopping
rule. Whenever the EBIC ceases decreasing, the sequential procedure stops. The EBIC is developed in Chen and Chen (2008)
especially for sparse high-dimensional regression models. SLasso cum EBIC possesses the property of selection consistency,
and its computation is simple and light. Along the line of the first methodology discussed above, it is natural to apply the
SLasso cum EBIC method to the p regression models for identifying the non-zero coefficients. In this paper, we adapt the
original SLasso cum EBIC procedure to suit the special nature of the concentrationmatrixΩ . We propose two versions of the
adaption. In the first one, we treat the p regressionmodels separately, and the resultant approach is referred to as SR-SLasso
(single regression SLasso). In the second one,we treat all the p regressionmodels simultaneously, and the resultant approach
is referred to as JR-SLasso (joint regression SLasso). The selection consistency of the SLasso cum EBIC method carries over
to both SR-SLasso and JR-SLasso, which is verified in this paper as well. Comprehensive numerical studies are conducted to
compare these new approaches with some representative methods mentioned earlier. The numerical studies demonstrate
that the new approaches are more accurate than the other methods in identifying the non-zero entries ofΩ .

The rest of this paper is organized as follows. In Section 2,we describe the SR-SLasso and JR-SLasso approaches in detail. In
Section 3, we establish the selection consistency of the proposed approaches. In Section 4, we report two numerical studies.
In the first study, we compare our approaches with the others in nine commonly assumed settings on the concentration
matrix. In the second study, wemake the comparison based on a microarray expression data set from a breast cancer study.
The technical proofs are provided in the Appendix.

2. Methods

For an undirected graph G = (V , E), let V bemodeled as the set of the components of a random vector Y = (Y1, . . . , Yp).
We assume that Y follows a multivariate normal distribution N(µ,Σ). Without loss of generality, assume that µ = 0. Let
Yi− be the vector obtained from Y by eliminating component Yi. Denote byΣi− i− the variance–covariance matrix of Yi− , by
σ 2
i the variance of Yi, and byΣii− the covariance vector between Yi andYi− . By the theory ofmultivariate normal distribution,

the conditional distribution of Yi given Yi− is still normal, with the following conditional mean and conditional variance:

E(Yi|Yi−) = Σii−Σ
−1
i− i−Yi− , (1)
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