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a b s t r a c t

A functional polynomial regression model which includes the functional linear model and
functional quadratic model as two special cases is considered. In functional polynomial
regression, onemust balance the costs and benefits of usingmore parameters in themodel.
Themethod ofmodel detection to determinewhich orders of the polynomial are significant
in functional polynomial regression is developed. The proposed methods can identify the
truemodel consistently and have good prediction performances. Numerical studies clearly
confirm our theories.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recent technological advances in collecting and storing data have confronted statisticians with situations where the
datasets are of a functional nature (curves, images, etc.) with the need to build newmodels and develop newmethods. This
field of research, known as Functional Data Analysis (FDA), has been popularized by Ramsay and Silverman (2005). The first
advances in nonparametric FDA are described in Ferraty and Vieu (2006) (see also Oxford Handbook of FDA by Ferraty and
Romain, 2011).

In functional regression, special attention has been paid to functional linear models (Cardot et al., 2003; Shen and
Faraway, 2004; Cai and Hall, 2006; Hall and Horowitz, 2007). However, it is pointed out in Yao and Müller (2010) that
this model imposes a constraint on the regression relationship that may not be appropriate in some scenarios. Fully
nonparametricmethods have been studied recently in functional-data regression and related problems. See, e.g., Ferraty and
Vieu (2003, 2006) and Müller and Stadtmüller (2005). However, the problems of nonparametric regression and prediction
are intrinsically difficult from a statistical viewpoint. In particular, convergence rates can be slower than the inverse of any
polynomial in sample size, and so relatively large samples may be needed in order to ensure adequate performance.

Because the functional linear model is too restrictive on the regression relationship and nonparametric methods have
slow convergence rates, it is of interest to consider a compromise of the functional linear model and nonparametric model
that has better properties, but at the same time enhance its flexibility. Hence, the single-index functional regression model
was studied by Ait-Saïdi et al. (2008) using a cross-validated method. Chen et al. (2011) also considered the single-index
functional regression model using a method similar to Ait-Saïdi et al. (2008) and extended it to multiple index functional
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regression models. Also, a polynomial rate of convergence was obtained. Li et al. (2010) used a semiparametric single index
structure to model the potential interaction between the functional predictor and other covariates. Yao and Müller (2010)
generalized functional linear models to a functional polynomial model, which has greater flexibility.

In addition, it is well known that prediction accuracy can sometimes be improved by decreasing the model complexity.
That is, one can reduce the variance of the predicted values by sacrificing a little bit of bias, andhencemay improve the overall
prediction performance. Variable selection plays a fundamental role in this research field for regular regression analysis.
Traditional methods such as AIC, BIC and best subset selection suffer from a huge computational burden (Fan and Li, 2001).
Some shrinkage methods have been developed, which not only have less computational cost but can also simultaneously
select the significant variables and estimate the unknown regression coefficients. Tibshirani (1996) developed LASSO, which
becamemore popular after the LARS algorithmwas proposed by Efron et al. (2004). The smoothly clipped absolute deviation
(SCAD) penalty was studied by Fan and Li (2001), and achieves the oracle properties. Zou (2006) argued the possible
inconsistency in selection by LASSO and proposed adaptive LASSO. Inspired by variable selection problems in ANOVA and
nonparametric additive regression, Yuan and Lin (2006) proposed the group LASSOmethod.Wang and Xia (2009) borrowed
the idea of group LASSO and developed KLASSO, which can consistently distinguish the predictors with varying effects and
the irrelevant predictors.

In functional data analysis, we also face the problem of which orders of the polynomial are significant in functional
polynomial regression analysis. For example, it is expected to develop a method which can detect the quadratic term and
all the higher order terms in a functional polynomial model to be ignorable if a functional linear model can adequately
describe the regression relationship. It is noted that the shrinkage methods seem a feasible approach to deal with this issue.
However, up to now, these shrinkage methods have been investigated mostly in the situation where all the explanatory
variables take real values. Extending these shrinkage ideas to the functional polynomial regression is challenging due to
the intrinsic infinite dimension of functions. To the best of our knowledge, the model detection problem for functional
polynomial regression has not been considered.

Therefore, we are motivated to develop a detection method to identify which orders in a functional polynomial are
significant. To achieve this goal, we first project the predictors on a suitable basis of the underlying space. Then the functional
polynomial regression model can be alternatively expressed as a function of the principal component scores of predictor
processes, which lead to parsimonious representations after truncating principal components at a reasonable number.
As a result, each order of the functional polynomial model can be represented as a linear combination of some products
of principal component scores. Accordingly, these product terms with the same order can be regarded as a group. This
motivates us to utilize adaptive group lasso to solve the problem of identifying significant orders of a functional polynomial.
It is remarkable that theproposedmethodologyprovides a general framework ofmodel structure detection for the functional
polynomial regression model.

This paper is organized as follows. In Section 2, we introduce functional polynomial models, while all of the estimating
procedures are developed in Section 3. The asymptotic theory of the proposed procedures is established in Section 4, while
Section 5 is devoted to a report on simulation results. In Section 6, we analyze a real dataset to illustrate the proposed
procedures. Some discussions are contained in Section 7. All proofs are delayed to Section 8.

2. Functional polynomial regression model

Suppose we have independent and identically distributed (i.i.d.) observations {(Xi, Yi)i=1,...,n}. We consider the pth order
(p ≥ 2) functional polynomial regression model with scale response Yi and functional predictor Xi due to Yao and Müller
(2010),

Yi = α +


T
γ1(s)X c

i (s)ds + · · · +


Tp

γp(t1, . . . , tp)X c
i (t1) · · · X c

i (tp)dt1 · · · dtp + εi, (2.1)

where E(εi|Xi) = 0, i = 1, . . . , n and α is an intercept. γj, 1 ≤ j ≤ p, are jth order regression parameter functions,
respectively. X c

i (s) = Xi(s) − µX (s) denotes the centered predictor process with µX (s) = EXi(s). The regression parameter
functions are assumed to be smooth and square integrable. Yao and Müller (2010) mainly studied the estimating problem
for the functional quadratic regression model, which is a special case of model (2.1) with p = 2. However, we focus on the
model detection and estimation for model (2.1).

The predictor processes Xi, i = 1, . . . , n are assumed to be non-stationary smooth random functions in L2(T ) with
smooth auto-covariance function cov(Xi(s1), Xi(s2)) = GX (s1, s2). It is assumed that processes Xi, i = 1, . . . , n possess
Karhunen–Loève expansions with representations

Xi(s) = µX (s) +

∞
j=1

ηijφj(s), (2.2)

where the coefficientsηij are a sequence of uncorrelated randomvariableswithmeans E(ηij) = 0 and variances var(ηij) = νj,
and φj is a sequence of orthogonal eigenfunctions of the auto-covariance function GX (s1, s2) with corresponding non-
increasing eigenvalues νj.
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