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1. Introduction

Modeling seasonality in time series is an important topic in statistics. Omitting seasonality from a model may induce
substantial bias. For example, if we want to model the average monthly temperature, ignoring the seasonal component
can lead to huge bias in predicted values. In practice, many time series exhibit seasonal patterns in various forms. Monthly
tourist arrivals and monthly electricity demand are examples of time series subject to seasonality (Soares and Medeiros,
2008; Chang et al., 2009; Taylor, 2010b). Practitioners commonly employ either dummy variables or the Fourier transform
to model seasonality. The former method relies on introducing a set of indicator variables to capture the seasonality in each
season, and the latter method involves fitting a Fourier series to capture the curve of seasonality. These two methods were
explained by Soares and Medeiros (2008).

The methods described above assume that the seasonal component within the same season is time invariant. Some
practitioners are also interested in methods that allow the seasonal component within each season to change over time.
This paper refers to this phenomenon as dynamic seasonality. The Holt-Winters (HW) method, first proposed by Holt (1957)
and made popular by Winters (1960), is commonly adopted for dynamic seasonality modeling. It is based on the application
of an exponential smoothing mechanism to capture seasonality dynamically. Williams (1987) modified the HW method to
allow the smoothing parameters to evolve over time. Ord et al. (1997) incorporated a state space model framework into
the HW method. With this framework, the HW method can be taken as parametric, and hence more sophistical statistical
inference like interval estimation is feasible (Koehler et al., 2001). More details of the above discussion can be found in
Hyndman et al. (2008b). Taylor (2010a,b) extended the HW method to seasonality over multiple cycles. The HW method is
appealing because exponential smoothing is a simple, robust, and effective method (Chatfield and Yar, 1988).

Practitioners are also interested in using parametric models to capture dynamic seasonality. One such model is the
seasonal autoregressive integrated moving average (ARIMA) class of model. This type of model captures the dynamics of
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seasonality through the Box-Jenkins mechanism. The seasonal ARIMA class of model utilizes linear structure to capture the
autocorrelation of the time series. Box et al. (1994) set out the details of seasonal ARIMA models. Another common type
of parametric model for dynamic seasonality is the periodic autoregressive (PAR) model class. This type of model can be
regarded as a generalization of seasonal autoregressive models. PAR models assume that, because observations in different
seasons have different autoregressive structures, the time series in each season has its own set of parameters. Studies such
as those of Franses (1995) have suggested that, because it may not be possible to separate seasonality from the stochastic
trend, PAR models, which do not require this assumption, can help us model seasonal time series with a stochastic trend.
Franses and Paap (2004) describe PAR models in more detail.

Although it is easy to implement the HW method, it assumes that all seasons have the same set of smoothing parameters.
Hyndman et al. (2008a) noted that the HW method can be represented in a state space model in which the seasonal
component has a seasonal unit root. Therefore, the HW method may not be suitable for periodically stationary time series.
Because of the restriction whereby the seasonal component and the stochastic trend are inseparable, neither seasonal
ARIMA models nor PAR models can return an estimate of the seasonal component. If we want to undertake further analysis
based on the seasonal component (e.g., a policy-maker may want to examine seasonal variation of the unemployment rate
through the seasonal component), seasonal ARIMA models and PAR models may not be the best choices. This restriction also
makes it difficult to interpret the dynamics of these models. Moreover, the seasonality considered in the literature is usually
considered as seasonality in mean. However, the seasonality of financial time series is often reflected in the fluctuation of the
process. For example, if we plot the autocorrelation function (ACF) of any equity return, we will not find a seasonal pattern.
Nevertheless, if we instead plot the ACF of the squared return as a proxy of the variance of the return random variable, a
clear seasonal pattern will be revealed. This type of seasonality, which is associated with the variance process, is regarded
as seasonality in variance. Bildik (2001) illustrated in detail the possible causes of seasonality in the variance observed in
financial time series. Giot (2000, 2005) introduced a decomposition to extract seasonality in variance and used the average
squared return of each season to model the corresponding seasonal component. Taylor and Xu (1997) and Chang and Taylor
(2003) incorporated dummy variables into a GARCH model, one of the most commonly used classes of volatility models
for financial time series introduced by Engle (1982) and Bollerslev (1986), to capture seasonality in variance. Although
several methods deal with seasonality in variance deterministically, only a few of them can handle dynamic seasonality
in variance. One example is the periodic GARCH (PGARCH) model proposed by Bollerslev and Ghysels (1996). However,
the PGARCH model has some limitations. For instance, it can be used for forecasting but cannot return an estimate of the
seasonal component. We have two main objectives in this paper. First, we introduce a new class of periodically stationary
dynamic seasonality in the mean models to alleviate shortcomings found in existing methods. Second, we develop a new
model to account for dynamic seasonality in variance.

The remainder of this paper is organized as follows. Section 2 introduces the dynamic seasonality models developed in
this paper. Section 3 outlines the quasi-maximum likelihood estimation process and a model selection procedure that assist
us in finding a suitable dynamic seasonality model to fit the data. Section 4 outlines a simulation study, and Section 5 gives
two empirical examples to demonstrate the advantages of considering dynamic seasonality. Section 6 concludes the paper.

2. Dynamic seasonality models

2.1. Seasonality in the mean

This section introduces the structure of our dynamic seasonality in the mean (DSM) model, a model that takes account
of the dynamic nature of the seasonality in mean. Let y;, t = 1...,n, be the time series of interest. Assume that y; is
periodically stationary and that d seasons are identified in the time series. Let s; be the seasonal factor at time t. Following
Hylleberg (1986) and Bell and Hillmer (1992), we consider the additive decomposition of y; as follows:

Ye = ¢ + 8¢ +0v&, & ~ D(0, 1), (1)

where p, is the trend of y;, af is the conditional variance given J;_ (the information on y up to time t — 1), &; is independent
innovation,and D(0, 1) is a distribution with mean 0 and variance 1. The components s;, i, and atz are assumed to be J;_1-
measurable. We argue that any possible autocorrelation in &; can be explained by the ARMA structure embedded in .,
and thus assume ¢; to be independent. This additive decomposition is common in modeling seasonality in the mean. It is
flexible enough to accommodate models with seasonality in the multiplicative form instead of the additive form by taking
a logarithmic transformation (Bell and Hillmer, 1992), because we allow the distribution of the error &; to be unspecified.
As a result, the representation given by (1) can describe many kinds of seasonality in the mean.

The decomposition of y; in (1) gives E[y;|J:_1] = ¢ + S¢. In other words, y; — 1, provides information relevant to the
seasonal factor at time t. Therefore, we propose to model the seasonal factor s; by

d
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ko0 > 0, 8k1,8k2 >0 and &1+ &2 < 1,
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