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a b s t r a c t

The selection of an appropriate model is a fundamental step of the data analysis in small
area estimation. Bias corrections to the Akaike information criterion, AIC , and to the Kull-
back symmetric divergence criterion, KIC , are derived for the Fay–Herriot model. Further-
more, three bootstrap-corrected variants of AIC and of KIC are proposed. The performance
of the eight considered criteria is investigatedwith a simulation study and an application to
real data. The obtained results suggest that there are better alternatives than the classical
AIC .

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem of model selection for the well known area-level linear mixed model due to Fay and Herriot
(1979). Estimates of small area parameters based on area-level models are generally more efficient than direct estimates.
Random intercept models, like the Fay–Herriot model, are used when the variability between areas is not sufficiently
explained by the auxiliary variables. Small area estimation is an increasingly important part of survey sample inference
with applications to social and economic statistics. Small-area models improve the accuracy of direct area estimators by
including, via modeling, the information of all sample observations and not just the one within the corresponding area, and
by making use of auxiliary information. Statistical estimation and inference for these models have been largely described
by Rao (2003) and Jiang and Lahiri (2006).

In the literature of both the general small area estimation and the Fay–Herriot model, there exist many works for
variable selection. The very first paper of Fay and Herriot (1979) discussed variable selection. Early works often used ad
hoc approaches such as validation samples and the classic Akaike information criterion (AIC). The AIC was introduced
by Akaike (1973). Recent works were focused on general model selection approaches including AIC and other related
criteria. Longford (2005) suggested a model averaging approach that requires deriving the covariances among estimates
from different candidate models. Jiang et al. (2008) developed the adaptative fence method, Datta et al. (2011) focused on
the random effect while fixing the choice of covariates. Burnham and Anderson (2002), Yang (2005), Kubokawa (2011) and
Han (2013), among others, proposed AIC related criteria.

The AIC has been applied in different settings since its derivation is quite general. The AIC was designed to be an approx-
imately unbiased estimator of the expected Kullback–Leibler information of a fitted model. In general, it is a good estimator
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when the sample size is large and the number of unknown parameters is small. In other settings the AIC may present a
large negative bias when estimating the Kullback–Leibler information, which limits its usefulness as a model selection cri-
terion. Hurvich and Tsai (1989) derived the corrected Akaike information criterion (AICc) for regression and autoregressive
time series models. The AICc has been extended to autoregressive moving-average modeling, vector autoregressive mod-
eling and multivariate regression modeling by Hurvich et al. (1990), Hurvich and Tsai (1993) and Bedrick and Tsai (1994),
respectively. The AICc often outperforms the AIC but it is less used since its justification depends on the particular underly-
ing model. Other interesting corrected variants of the AIC were given by Shang and Cavanaugh (2008). They proposed two
bootstrap-corrected versions for the joint selection of the fixed and random components of a linear mixed model.

The Kullback–Leibler divergence, used to develop the AIC , assesses the dissimilarity between two statistical models. In
fact, this is what every divergence measure does. Therefore, we can think of substituting the Kullback–Leibler divergence
measure by any other divergence measure in order to define a new model selection criterion. Cavanaugh (1999, 2004)
proposed to consider the Kullback symmetric divergence criterion for linear model selection. As the Kullback symmetric
divergence is the sum of the Kullback–Leibler divergence and the divergence obtained by reversing the roles of the two
models in the definition of the Kullback–Leibler measure, it captures different characteristics of the model. The proposed
criteria (KIC and KICc) are the analogous of the AIC and the AICc for linear models.

In this paper, we derive the analogous to the AICc and the KICc for the Fay–Herriot model. We also propose bootstrap AIC
and KIC variants. We compare through a simulation study the performance of the new criteria in relation to AIC and KIC .
The rest of the paper is organized as follows. Sections 2 and 3 introduce AIC and KIC variants respectively. Section 4 presents
a simulation study comparing the considered model selection criteria. Section 5 gives an application to real data where the
use of the different information criteria is illustrated. The aim is the small area estimation of poverty proportions by using
empirical best predictors based on Fay–Herriot models. Finally, Section 6 gives some concluding remarks.

2. The AIC variants

Let us postulate that target data y is generated by the Fay–Herriot model

y = Xβ + u + e, (2.1)

where y = col
1≤d≤D

(yd), u = col
1≤d≤D

(ud), e = col
1≤d≤D

(ed),X = col
1≤d≤D

(xd), xd = col′
1≤i≤p

(xdi), β = col
1≤i≤p

(βi), u ∼ N(0,Vu) with

Vu = λID, e ∼ N(0,Ve) with Ve = diag
1≤d≤D

(σ 2
d ) and known variances σ 2

d , and u and e are independent. For θ = (β, λ), the

marginal probability density function (p.d.f.) f (y|θ) is multivariate normal withmean Xβ and variancematrix Vλ = Vu+Ve.
In the context of small area estimation, Rao (2003) describes the model (2.1) as the basic area-level (type A) model and he
points out the differences with the basic unit-level (type B) model. The type B model is a particular case of the general
linear mixed model appearing in Kubokawa (2011), but the type A model is not. This is why the study of AIC variants in the
Fay–Herriot model deserves specific attention, see e.g. Han (2013).

Let us assume that the true model has also the form (2.1), but having the parameters β0 and λ0 with βi = 0 for
i = p0 + 1, . . . , p and some 0 < p0 ≤ p. Let us denote θ0 = (β0, λ0) and x0d = (x1d, . . . , xp0d). We refer to f (y|θ0)
as the p.d.f. of the true generating model and f (y|θ) as the approximating p.d.f. associated to the candidate model (2.1).

The Kullback–Leibler divergence between f (y|θ0) and f (y|θ) with respect to f (y|θ0),

I(θ0, θ) = Eθ0


log

f (y|θ0)

f (y|θ)


,

reflects the separation between the true p.d.f. f (y|θ0) and the approximating p.d.f. f (y|θ).
For two arbitrary parametric densities f (y|θ1) and f (y|θ2), Cavanaugh (1997) defined

d(θ1, θ2) = Eθ1 [−2 log f (y|θ2)] , (2.2)

so that

2I(θ0, θ) = d(θ0, θ) − d(θ0, θ0).

To discriminate among various candidatemodels I(θ0, θ) can be substituted by d(θ0, θ) since d(θ0, θ0) does not depend on θ.
Akaike (1973) noted that −2 log f (y|θ̂), where θ̂ is an estimator of θ, is a biased estimator of Eθ0 [d(θ0, θ̂)]. Further,

assuming that θ̂ is the maximum likelihood (ML) estimator, the bias adjustment

B1(θ0, θ̂) = Eθ0


d(θ0, θ̂)


− Eθ0


−2 log f (y|θ̂)


can be asymptotically estimated by twice the dimension of θ̂. Therefore, the expected value of

AIC = −2 log f (y|θ̂) + 2(p + 1)
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