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a b s t r a c t

A new class of discrete random fields designed for quick simulation and covariance
inference under inhomogeneous conditions is introduced and studied. Simulation of these
correlated fields can be done in a single pass instead of relying on multi-pass convergent
methods like the Gibbs Sampler or other Markov chain Monte Carlo algorithms. The fields
are constructed directly fromanundirected graphwith specifiedmarginal probabilitymass
functions and covariances between nearby vertices in a manner that makes simulation
quite feasible yet maintains the desired properties. Special cases of these correlated fields
have been deployed successfully in data authentication, object detection and CAPTCHA1

generation. Further applications in maximum likelihood estimation and classification such
as optical character recognition are now given within.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Random fields arewidely used in sciences and technologies tomodel spatially distributed randomphenomena or objects.
Within science, random fields are used in geophysics, astrophysics, statistical mechanics, underwater acoustics, structural
biology and agriculture. Applications of random fields in technologies include TV signal processing, image processing in
photography such as medical images (human brain imaging, functional magnetic resonance imaging, mammography),
computer vision, web data extraction, clustering gene expression time series, natural language processing, etc. Readers
are referred to Ashburner et al. (2003), Chellappa and Jain (1993), Li et al. (2008, 1995), Li (1995), Winkler (2003), Worsley
(1995), Zhang et al. (2001), and Zhu et al. (2008) for those applications. Technologically, researchers of random fields have
dealt either with the modeling of images (for synthesis, recognition or compression purposes) or with the resolution of
various spatial inverse problems (image restoration and reconstruction, deblurring, classification, segmentation, data fusion,
optical flow estimation, optical character recognition, stereo matching, finger print classification, pattern recognition, face
recognition, intelligent video surveillance, sparse signal recovery, natural language processing like Chinese chunk and so on,
see Blue et al. (1993), Chellappa et al. (1995), Li (1995), Sun et al. (2008), and Winkler (2003)).

Scientists and technicians are interested in the inverse problems such as image restoration, boundary detection,
tomographic reconstruction, shape detection from shading, and motion analysis. Many precisely formulated mathematical
models were constructed tomodel certain types of random fields, and variousmethods and estimators have been developed
tomake the proposedmodelswork in application. There are diverse needs calling for simulating random fields. For example,
simulation is employed to calculateminimummean square (MMS) andmaximumposteriormarginal (MPM) estimators, see
Winkler (2003). Simulation can also be a smoothing technique. In Chapter 2 ofWinkler (2003), various smoothing techniques
were proposed to clean ‘‘dirty’’ pictures. Most of these methods involve simulation. The difficult problem is how to simulate
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1 An acronym for ‘‘Completely Automated Public Turing test to tell Computers and Humans Apart’’ that is widely used to protect online resources from
abuse by automated agents.
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random fields effectively. A typical simulation would involve many correlated random variables, and could easily exceed
the capacity of modern computers if one tried to simulate the whole random field from the probability distribution directly.

Researchers frequently resort to imposing discrete Markov assumptions on their random fields to be simulated out of
practical need. In this regard, the Gibbs sampler was proposed to ease this simulation difficulty. Briefly speaking, a Gibbs
sampler starts with a given initial configuration (i.e. potential realization of the random field) or a configuration chosen at
random from some initial distribution, and then updates its configuration vertex by vertex based on the local characteristics
of the random field. Once all vertices of a configuration are sequentially updated, a sweep or a pass is finished. A Gibbs
sampler usually takes hundreds of sweeps to produce a configuration closely consistent with a given distribution and there
are still computational and convergence issues to deal with. Indeed, the number of possible random configurations within a
general discrete random field can be enormous and simulation is further complicated when the vertices are correlated with
one another. These factors can make Gibbs sampling and other Markov chain Monte Carlo simulation impractical.

In this paper, we propose a graph theoretic construction for simulation and introduce a new class of discrete correlated
random fields which incorporate given probability mass functions (pmfs) corresponding to vertices in a graph and pairwise
covariances corresponding to edges in a graph. These fields are designed with efficient simulation in mind. Proposition 1
on which our fields are based establishes a method to imbed desired covariances and marginal probabilities into a random
field while maintaining simulation ease. Indeed, Proposition 1 is a simple means to construct some conditional probabilities
consistent with given marginal probabilities and covariances in such a way that sampling the missing portion of a random
field sequentially is very feasible. More precisely, when simulating a new vertex, we compute this conditional probability
of its state conditioned on the known portion and the previously-simulated vertices. We can construct a random field in
one pass based on this algorithm. This method is especially suited to problems where pairwise covariance captures the
meaningful relationships between variables. (We explore the role of covariances further in Section 4.) For demonstration
purposes, we discuss prior applications of our random fields to data authentication, object detection and CAPTCHA
generation, as well as develop new example applications inmaximum likelihood estimation and classification. In particular,
our experimental results suggest our algorithm may help improve optical character recognition.

The remainder of this note is laid out as follows. Section 2 contains our notation and the statement of our main results,
Proposition 1; Section 3 provides several mathematical examples illustrating themethod; and in Section 4, we develop new
applications in maximum likelihood estimation and optical character recognition.

2. Notation and background

Our goal is to simulate a random field so that desired properties (in our case, marginal probabilities and pair-wise
covariances) are maintained. Specifically, we will give a method for computing conditional probabilities so that these
properties are maintained. We begin by describing how the problem is constructed in Section 2.1; then, we will describe
exactly how to compute the probabilities in Section 2.2; finally, illustrative examples are given in Section 3.

2.1. Problem setup

Suppose we are given a desired probability mass function (pmf) for each random variable and a set of desired pairwise
covariances for some set of pairs of the random variables. Our goal is to simulate the random variables so that the desired
properties are met.

2.1.1. Definitions
Wewill beworkingwith undirected and directed graphs in the following.We begin by providing the required definitions

and notation.
An undirected graph G = (V , E) is a set of vertices V and edges E between some of the vertices, where (u, v) ∈ E if there

is an edge between vertices u and v; in this case, u and v are called neighbors. A directed graph D = (V , A) is a set of vertices
V and arcs A from some of the vertices to others, where (u, v) ∈ A if there is an arc from vertex u to vertex v; in this case, u is
called a parent of v and v is called a child of u. More generally, we would say that v is an ancestor of u if there are a collection
of arcs starting at v and going to u such that the first arc starts at v, the last arc ends at u and every arc in between starts
where the previous one ends. The real difference between directed and undirected graphs is the former has a direction to
its edges.

An undirected graph is called connected if there is a path of edges between every pair of vertices. The open neighborhood
NG(v) of vertex v ∈ V is the set of vertices u ≠ v such that there is an edge between u and v, i.e., (u, v) ∈ E. We denote the
open neighborhood of v by NG(v) and the closed neighborhood NG(v) ∪ {v} by NG[v]. For a set of vertices B, we define the
open neighborhood of B as NG(B) = ∪v∈B NG(v) \ B and closed neighborhood NG[B] = NG(B) ∪ B. For convenience, we set
NG(∅) = V .

A directed graph is called acyclic if there is no vertex v that is an ancestor of itself.
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