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a b s t r a c t

Scalar-on-function regression problemswith continuous outcomes arise naturally inmany
settings, and a wealth of estimation methods now exist. Despite the clear differences in
regression model assumptions, tuning parameter selection, and the incorporation of func-
tional structure, it remains common to apply a single method to any dataset of interest. In
this paper we develop tools for estimator selection and combination in the context of con-
tinuous scalar-on-function regression based on minimizing the cross-validated prediction
error of the final estimator. A broad collection of functional and high-dimensional regres-
sion methods is used as a library of candidate estimators. We find that the performance of
any singlemethod relative to others can vary dramatically across datasets, but that the pro-
posed cross-validation procedure is consistently among the top performers. Four real-data
analyses using publicly available benchmark datasets are presented; code implementing
these analyses and facilitating the application of proposed methods on future datasets is
available in a web supplement.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The problem of predicting continuous scalar outcomes from functional predictors has received high levels of interest in
recent years, driven in part by a proliferation of complex datasets and by an increase in computational power. Although
there are now many approaches to this problem, including several techniques for the popular functional linear model and
methods for a number of data-generating scenarios, it is rare for a practitioner to apply more than one scalar-on-function
regression method to any dataset. Doing so would potentially yield improved predictions of outcomes or new insights into
scientific processes; indeed, the choice of regressionmodel and estimation technique (a process wewill refer to as estimator
selection) is important and can dramatically affect prediction of outcomes and interpretation of results.

In this manuscript we develop approaches to facilitate the comparison and combination of many scalar-on-function
estimation methods. We first focus on estimator selection, or the choice of a single estimator from a large collection of
candidates, and then on the dynamic combination of approaches to yield an optimal ensemble estimator of the association
between a scalar outcome and a functional predictor. Our proposed approaches are based on estimator selection through
minimizing cross-validated loss (Breiman, 1996; Dudoit and van der Laan, 2005; van der Laan and Dudoit, 2003; Wolpert,
1992), referred to variously in the literature as model stacking and super learning. We adapt these strategies to the setting
in which predictors are both high dimensional and spatially structured. Publicly available software allows easy comparison
and selection of methods for predicting scalar outcomes from functional predictors.
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Many approaches to scalar-on-function regression for continuous outcomes are now available. In the context of the
functional linear model (described below), techniques include functional principal components regression (Ramsay and
Silverman, 2005) and partial least squares (Reiss and Ogden, 2007), and penalized spline methods (Cardot et al., 2003;
Goldsmith et al., 2011a; Marx and Eilers, 1999; James et al., 2009). Extensions of the functional linear model include the
functional generalized additive model (McLean et al., in press), the functional additive model (James and Silverman, 2005),
and single-index regressions (Eilers et al., 2009). A point-impactmodel was proposed in Lindquist andMcKeague (2009) and
a Bayesian hierarchical regression kernel method was developed inWoodard et al. (in press). In addition, high-dimensional
regression andmachine learningmethods that are not specifically designed for structured functional data cannonetheless be
applied to such datasets. Such methods include ridge regression, lasso and elastic net (Friedman et al., 2010), classification
and regression trees (Breiman et al., 1984), boosting (Freund and Schapire, 1995), random forests (Breiman, 2001), and
support vector machines (Suykens and Vandewalle, 1999). These methods are not necessarily designed for functional data,
but could be applied to scores resulting from a truncated functional principal component analysis or from other reduced
rank basis representations to give hybrid functional methods. Many of the approaches mentioned above are accompanied
by software implementations.

We are motivated by a desire to optimally predict continuous scalar outcomes from functional data, acknowledging
that no one method will be universally superior, and therefore pursue estimator selection and ensembling to compare
and combine competing methods. To demonstrate the practical significance of this approach, we consider four real-
data examples in this manuscript. First we consider the standard Canadian weather dataset, in which daily temperature
measurements are used to estimate log annual precipitation at 35monitoring stations. Next we analyze the Tecator dataset,
which consists of 215 near-infrared (NIR) absorbance spectra ofmeat samples used as predictors of fat content of the sample.
Thirdwe analyze a diffusion tensor imaging (DTI) dataset, where the goal is predicting a scalarmeasure of cognitive function
from functional summaries of intracranial white matter microstructure using 334 observations. Finally we examine an
additional NIR spectra dataset,which consists of 72 samples of cookie dough inwhich the sucrose content is of interest. These
examples illustrate several practical issues related to the application of scalar-on-function regression methods, including
the differential performance of individualmethods across datasets, the value of applying, selecting, and ensemblingmultiple
methods, and the computational concerns in the proposed techniques. All datasets considered are publicly available, and
the code implementing each analysis is available as a web supplement.

The remainder of the manuscript is organized as follows. A broad selection of approaches for functional regression is
discussed in Section 2, while estimator selection and ensembling are detailed in Section 3. Real data analyses are presented
in Section 4. We close with a discussion in Section 5.

2. Existing methods for continuous scalar-on-function regression

We observe data [Yi,Wi(s)] for subjects 1 ≤ i ≤ I where Yi is a continuous outcome andWi(s), without loss of generality
assuming s ∈ [0, 1], is the functional predictor of interest. In practice the curvesWi(s) are observed on a discrete grid {sij}

Ji
j=1

that is potentially sparse and subject-specific, and often observations are subject tomeasurement error. Preprocessing steps
such as smoothing or functional principal components analysis (FPCA) can be used to reduce the effect ofmeasurement error
and obtain curves on a dense common grid {sj}

J
j=1; in this exposition we will assume data in this form. This section reviews

existing methods for estimating the regression function ψ0(W (s)) = E [Y | W (s)]. While we attempt to be thorough, this
review is not exhaustive. Our discussion focuses only on a single functional predictor although several of the approaches
discussed allowmultiple functional predictors or the inclusion of non-functional covariates, both of which are important in
practice.

2.1. Functional linear model

The functional linear model (FLM) extends the standard multiple linear regression model to functional predictors. Thus
we assume

Yi =

 1

0
Wi(s)β(s)ds + ϵi (1)

where ϵi ∼ N

0, σ 2


and β(s) is the coefficient function. The FLM seeks to minimize the sum of squared errors ∥Y − 1

0 W (s)β(s)ds∥2 where ∥v∥ =
√
vTv. It is additionally assumed, either implicitly or explicitly, that the coefficient function

β(s) is smooth in some sense over its domain; such an assumption respects the local structure inherent in the predictor
and avoids the problem of an ill-posed regression when J ≥ I . The functional linear model is perhaps the most common
approach for scalar-on-function regression, and many techniques have been proposed to estimate the coefficient function
β(s) based on different assumed forms of this function. The coefficient function β(s) is an interpretable object: locations
with large |β(s)| are influential for the outcome, and the direction of the association is given by the sign of the coefficient
function.

Functional principal components regression (FPCR) is based on an FPCA decomposition of the functional predictors
(Ramsay and Silverman, 2005). Specifically, curves are approximated using Wi(s) ≈

KW
k=1 cikφk(s) where ci = {cik}

KW
k=1
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