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Abstract

For estimating the common mean of two normal populations with unknown and possibly unequal variances the well-known
Graybill–Deal estimator (GDE) has been a motivating factor for research over the last five decades. Surprisingly the literature does
not have much to show when it comes to the maximum likelihood estimator (MLE) and its properties compared to those of the
GDE. The purpose of this note is to shed some light on the structure of the MLE, and compare it with the GDE. While studying the
asymptotic variance of the GDE, we provide an upgraded set of bounds for its variance. A massive simulation study has been carried
out with very high level of accuracy to compare the variances of the above two estimators results of which are quite interesting.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

One of the oldest and most interesting problems in statistical inference, which has dogged the researchers over the
last five decades, is the estimation of a common mean of two normal populations with unknown and possibly unequal
variances.

To be specific, let us assume that we have i.i.d. observations Xi1, . . . , Xini
from N(�, �2

i ), i = 1, 2. Define X̄i and
Si as

Xi =
ni∑

j=1

Xij /ni, Si =
ni∑

j=1

(Xij − Xi)
2, (1.1)

where Xi ∼ N(�, �2
i /ni), Si ∼ �2

i �
2
(ni−1) (i = 1, 2), and these four statistics are mutually independent. Throughout

this note it is assumed that ni �2 (i = 1, 2) unless mentioned otherwise.
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Note that (X1, X2, S1, S2) is minimal sufficient for (�, �2
1, �

2
2) but not complete. As a result, one cannot get the

UMVUE (if it exists) using the standard Rao–Blackwell theorem on an unbiased estimator for estimating the common
mean �.

The motivation of this problem (i.e., estimation of �) comes from a balanced incomplete block design (BIBD) with
uncorrelated random block effects. For the �th treatment effect (say, ��) one has two estimates—namely, the intra-block
estimate and the inter-block estimate (say, �̂� and �̂∗

� , respectively). Under the usual design assumptions, �̂� and �̂∗
� are

independent, have normal distributions with the common mean �� but with unknown and possibly unequal variances.
The problem thus boils down to derive an efficient estimate of �� on the basis of �̂�, �̂∗

� and their variance estimates.
Coming back to our original model (1.1), if the population variances (�2

i , i = 1, 2) are completely known, then the
optimal estimator of � is

�̂ =
2∑

i=1

(ni/�
2
i )Xi

/
2∑

i=1

(ni/�
2
i ) , (1.2)

which is the UMVUE, BLUE as well as the MLE. For the case of equal sample sizes, one just needs to know the ratio
(�2

1/�
2
2), apart from X1 and X2, to obtain (1.2).

In our present problem, where �2
i , i=1, 2, are unknown and possibly unequal, the most appealing unbiased estimator

of � has been the Graybill–Deal estimator (GDE) given as

�̂GD =
2∑

i=1

(ni/s
2
i )Xi

/
2∑

i=1

(ni/s
2
i ) , (1.3)

where s2
i = Si/(ni − 1), i = 1, 2. Graybill and Deal (1959) obtained conditions on n1 and n2 for which �̂GD has a

smaller variance than Xi , i = 1, 2.
Even though Graybill and Deal pioneered the research on common mean estimation, it is probably due to Zacks

(1966, 1970) that many other researchers paid attention to this interesting problem and its real-life applications. In
Zacks’ own words—“. . . In 1963 I was approached by a soil engineer. He wanted to estimate the common mean of
two populations and he didn’t know anything about the variances. But, apriori from his theory he said that the means
should be same, and here are the two samples from two different soils. So I thought about this problem a little bit and
I started to investigate. I realized that there is room for innovation . . .” (see Kempthorne et al., 1991).

For other applications of the common mean problem, especially in clinical trials, see Kelleher (1996).
Most of the research so far on the estimation of a common mean has taken place on three fonts: (i) comparing the

GDE with the individual sample means (i.e., Xi’s); (ii) studying the optimality of GDE and its natural generalizations
in suitable classes of estimators; and (iii) studying the performance of Bayes and preliminary test-based estimators with
that of the GDE. For a good review of the literature on this problem and other generalizations one can see Kubokawa
(1987, 1991) and other references therein.Among some interesting results pertaining to the GDE, Sinha (1985) obtained
an unbiased estimate of the variance of the GDE in the form of an infinite series which can be truncated suitably to
get an approximate unbiased estimate up to any desired order. This result is helpful because the studentized version
[{(�̂GD − �)/V âr(�̂GD)}1/2], which follows N(0, 1) asymptotically, can be used for testing as well as for interval
estimation of �.

Quite surprisingly there has not been any discussion about the MLE and its performance relative to the other
estimators, especially the GDE. It should be pointed out that the GDE (in (1.3)) is not the MLE, contrary to the
statement made by Kelleher (1996) or Sinha (1979).

The purpose of this note is to focus on the MLE and its properties which have long been neglected in the literature.
Even with the availability of affordable and efficient computing resources no comparison has been made so far to see
how the GDE performs relative to the MLE. An important component of our study has been to see how the variances
of the GDE and the MLE depend on the parameters as well as the sample sizes. The numerical results that are reported
in the literature did not take this aspect seriously. As a result, the reported numerical studies have been haphazard, or
incomplete at best.

In Section 2, we study the structure of the MLE and provide a useful representation. Also we find its bias (exact) and
variance expressions. Further, we upgrade the existing results to obtain tighter bounds for the variance of the GDE. In
Section 3, we report the results of our extensive numerical study comparing the variances of the GDE and the MLE. A
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