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Abstract

The plug-in bandwidth selection method in nonparametric kernel hazard estimation is considered, and a weak dependence on the
sample data is assumed. A general result of asymptotic optimality for the plug-in bandwidth is presented, that is valid for the hazard
function, as well as for the density and distribution functions. In a simulation study, this method is compared with the “leave more
than one out” cross-validation criterion under dependence. Simulations show that smaller errors and much less sample variability
can be reached, and that a good selection of the pilot bandwidth can be done by means of “leave one out” cross-validation. Finally,
an application to an earthquake data set is made.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Letus consider areal random variable X, and assume that X has a continuous distribution function F and a probability
density function f. In this context, we also can describe the distribution of X by means of other equivalent functions,
such as the failure-rate function or hazard function
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where 1 — F(x) >0, that is, r(-) is defined in the set S = {x € R/1 — F(x) > 0}. Given a random sample X1, ..., X,,
each X; having the same distribution as X, one among the conventional nonparametric estimators of r(-) is the kernel
estimator, defined by
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In this expression
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is the known Parzen—Rosenblatt estimator of f(-), and Fj(-) is the kernel estimator of F(-), defined by
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with K (-) a kernel function, K*(x) = ff o K () du, and h = h(n) € R is the smoothing parameter, or bandwidth.

Hazard estimation is of interest in several fields of applied statistics (medicine, reliability,. . .). Nonparametric esti-
mation of hazard function was introduced in the statistical literature by Watson and Leadbetter (1964). Other authors,
among which are Ahmad (1976), Singpurwalla and Wong (1983) and Hassani et al. (1986), work in this field, but all
considering independence in the data.

One of the most appealing applications of hazard estimation is to analyze the structure of earthquakes, by considering
the random variable X as the difference between the time of occurrence of two consecutive earthquakes, and studying
its hazard function, or in this case, the failure rate of X (Estévez et al., 2002a).

A practical use of the hazard estimate, and for the density and distribution also, requires establishing a criterion to
select the bandwidth or smoothing parameter /. Estévez and Quintela (1999) work with the cross-validation criterion
in a dependence context—strong mixing (Rosenblatt, 1956)—and Estévez et al. (2002b) extend this method by using a
penalizing approach that works better in finite samples. In both papers, practical applications are made to earthquakes
data from different regions.

The plug-in methodology works in this way: to assess the global performance of gj(-) as an estimator of g(-) (where
g can be the density, distribution, or hazard function and g; are (3), (4) and (2), respectively) we will consider the
following quadratic measures of accuracy:

The integrated squared error (ISE)

ISE(h) = [(8h () — g(x) w(x) f(x) dx, 5
and the mean integrated squared error (MISE)
MISE(h) = E ( / (gn(x) — g(x))*w(x) f (x) dx) : (6)
If g is the hazard function, MISE could be nonexisting, and we can work with the function
. 1 — Fp(x)7?
MISE™(h) = E/ |:(rh (x) — r(x))—i| w(x) f(x)dx 7
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(Vieu, 1991). This author proved that such measures are asymptotically equivalent for the three functions considered
here. As usual, w is a bounded and compactly supported weight function.
In density and hazard estimation, MISE (or MISE*) can be written as

MISE(h) = C;(nh) ™! + C2(h**) + o(MISE(h)), (8)

where C; and C; are constants. Minimizing the two first terms of this function, we obtain that the asymptotically
optimal bandwidth has the form

hamise = C(K. g kon™ /D, ©)

with C (K, g, k) aconstant depending on the kernel K and the unknown function g, and being k the number of continuous
derivatives of the density f.
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