FISEVIER

Contents lists available at ScienceDirect

## Journal of Pediatric Surgery

journal homepage: www.elsevier.com/locate/jpedsurg



## Urological outcome in patients with Currarino syndrome



Luca Pio <sup>a,b,\*</sup>, Gianluca Piatelli <sup>a</sup>, Andrea Rossi <sup>a</sup>, Pierluigi Scarsi <sup>a</sup>, Elisa Merello <sup>a</sup>, Valeria Capra <sup>a</sup>, Armando Cama <sup>a</sup>, Piero Buffa <sup>a</sup>, Michele Torre <sup>a</sup>

- <sup>a</sup> Istituto Giannina Gaslini, Genova, Italy
- <sup>b</sup> DINOGMI, University of Genoa, Genova, Italy

#### ARTICLE INFO

Article history: Received 17 February 2014 Received in revised form 7 May 2014 Accepted 7 May 2014

Key words: Currarino syndrome Urological outcome Neuropathic bladder

#### ABSTRACT

Introduction: Currarino syndrome is a type of caudal regression syndrome characterized by the association of hemisacrum, anorectal malformation and presacral mass. Only few studies on small series report the incidence of urinary dysfunction in Currarino syndrome. Our aim was to evaluate the urological outcome in patients with Currarino syndrome.

Patients and methods: We retrospectively reviewed all Currarino syndrome patients treated in our institution. Of 20 patients, we could evaluate the urological outcome in 16. This group of patients underwent clinical, radiological and urodynamic evaluation.

Results: All 16 patients had a sacral defect, fourteen of them presenting a presacral mass (87.5%), eight a tethered cord (50%), and 7 anorectal malformations (43.7%). Eight patients underwent neurosurgical treatment for neural tube defects. In 14 patients, the presacral mass was resected. One case presented detrusor overactivity, 2 recurrent urinary tract infections and 2 vesicoureteral refluxes. Both patients with lipomyeloschisis had a neuropathic bladder. All the other patients could void the bladder spontaneously. Renal function was normal in all. Conclusion: Currarino syndrome is a rare congenital disorder presenting a variable phenotype. Urological outcome is good in the majority of patients.

© 2014 Elsevier Inc. All rights reserved.

Currarino syndrome (CS) was first described by Currarino et al. [1] as a congenital disorder characterized by the triad of anorectal malformation (ARM), sacrococcygeal defect, and presacral mass. The only mandatory clinical feature for diagnosis of CS is the sacral anomaly. Mutations of MNX1 gene have been reported in nearly all familial CS patients, with a 30% of CS sporadic patients. Current studies reported a mutation of MNX1 that is detected in about 50% of affected patients [2]. The presacral mass can be a teratoma, a dermoid cyst, a rectal duplication, or a combination of them. Different spinal abnormalities can be associated, such as anterior meningocele, tethered cord, or lipoma.

The most frequent type of ARM in CS is rectoperineal fistula [3]. However, different types of ARM were described in CS (rectourethral fistula, rectovestibular fistula, cloacal malformation).

Among the many different types of sacral agenesis described [4] and classified into 5 categories, the sacral anomaly in CS belongs to the 4th group (hemisacrum). Many associated congenital spinal abnormalities were described [5]. Neural tube malformations, particularly tethered cord, can be associated with CS, and spinal magnetic resonance imaging

E-mail address: lucakeats@hotmail.it (L. Pio).

(MRI) is the gold standard for detection of these anomalies. CS has variable phenotypes: some patients presented with only asymptomatic hemisacrum without other anomalies, others presented the complete triad and other associated gynecologic or urologic malformations. Due to this great variability of penetrance, the name of Currarino syndrome is more appropriate than Currarino triad [6].

Associated gynecologic malformations include bicornuate uterus, septate vagina, and bifid clitoris [7]. Urologic involvement may be characterized by duplex ureter, horseshoe or duplex kidney, vesicoureteral reflux (VUR), dysplastic kidney, or hypospadias.

There are only few reports about the therapeutic management and long term follow-up [8,9] and even less analyzing the urological outcome in patients with CS. In the largest reported series including 205 CS patients, 35% had urinary tract dysfunction [4], in other series the incidence of urological complications was about 20% [9]. A study performed by Crétolle reported an incidence of 3.4% of neuropathic bladder and 14% of urinary incontinence in a series of 29 patients [8]. Another study performed by Lee reported an incidence of 36% of urinary incontinence in a series of 14 patients [9]. However, in none of these studies it was possible to identify individual risk factors for urological dysfunction. In particular, owing to the small number of patients, no significant relation among the type of sacrococcygeal defect, treatment of presacral mass or anorectal anomaly, and urological sequelae was reported. Another confounding factor is the treatment received, that can

<sup>\*</sup> Corresponding author at: Paediatric Surgery Department, DINOGMI, University of Genova, Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy. Tel.:  $+39\,010\,5636217$ ; fax:  $+39\,010\,3075092$ .

**Table 1**Patients collected data.

| ID | Gender | Age at presentation (months) | Genetics               | Neural tube<br>defect           | Age at<br>NST<br>(months) | Presacral<br>mass       | Age at<br>OST<br>(months) | ARM                   | Age at<br>GIT<br>(months) | Number of surgical intervention | Bowel<br>outcome   | Urological<br>outcome          | Follow-<br>up<br>(months) |
|----|--------|------------------------------|------------------------|---------------------------------|---------------------------|-------------------------|---------------------------|-----------------------|---------------------------|---------------------------------|--------------------|--------------------------------|---------------------------|
| 1  | F      | 48                           | Sporadic               | Tethered cord,<br>lipomyelocele | 42                        | Lipoma                  | 42                        |                       |                           | 2                               | Constipation       | Neuropathic<br>bladder,<br>VUR | 21                        |
| 2  | F      | 60                           | Sporadic               | Tethered cord                   | 54                        |                         |                           |                       |                           | 1                               |                    |                                | 93                        |
| 3  | F      | 1                            | Sporadic               |                                 |                           | Lipoma                  | 10                        | Rectoperineal fistula | 10                        | 2                               |                    |                                | 85                        |
| 4  | F      | 3                            | Sporadic               | Tethered cord,<br>lipomyelocele | 23                        | Sacral<br>dermoid       | 26                        |                       |                           | 2                               | Constipation       | Neuropathic<br>bladder         | 18                        |
| 5  | M      | 24                           | Sporadic               | Tethered cord                   | 26                        | Teratoma                | 32                        |                       |                           | 2                               | Constipation       | Detrusor<br>overactivity       | 74                        |
| 6  | F      | 72                           | Sporadic               | Tethered cord                   | 76                        | Anterior<br>meningocele | 88                        |                       |                           | 2                               | Constipation       | 3                              | 55                        |
| 7  | F      | 144                          | Sporadic (mutation)    | Tethered cord                   | 135                       | Anterior<br>meningocele | 135                       |                       |                           | 2                               |                    |                                | 133                       |
| 8  | M      | 1                            | Sporadic               | Myelocystocele                  |                           |                         |                           | Rectoperineal fistula | 4                         | 1                               |                    |                                | 64                        |
| 9  | M      | 1                            | Sporadic               | Tethered cord                   | 13                        | Teratoma                | 33                        |                       |                           | 2                               | Fecal incontinence | UTI                            | 36                        |
| 10 | F      | 12                           | Sporadic<br>(mutation) |                                 |                           | Anterior<br>meningocele | 22                        | Rectal<br>stenosis    | 22                        | 2                               | Fecal incontinence | VUR                            | 35                        |
| 11 | F      | 12                           | Sporadic               |                                 |                           | Teratoma                | 9                         |                       |                           | 1                               | Constipation       |                                | 94                        |
| 12 | F      | 2                            | Sporadic               | Diastematomyelia                |                           | Teratoma                | 2                         | Rectoperineal fistula | 2                         | 2                               | Constipation       |                                | 40                        |
| 13 | F      | 36                           | Sporadic               |                                 |                           | Teratoma                | 51                        | Rectoperineal fistula | 38                        | 2                               | Constipation       |                                | 213                       |
| 14 | F      | 24                           | Sporadic               | Tethered cord                   | 30                        | Sacral<br>dermoid       | 32                        |                       |                           | 2                               | Constipation       | UTI                            | 82                        |
| 15 | F      | 24                           | Familiar<br>(mutation) |                                 |                           | Anterior<br>meningocele | 32                        | Rectoperineal fistula | 33                        | 2                               | Constipation       |                                | 98                        |
| 16 | F      | 24                           | Familiar<br>(mutation) |                                 |                           | Anterior<br>meningocele | 27                        | Rectoperineal fistula | 27                        | 2                               |                    |                                | 220                       |

NST: Neurosurgical treatment; OST: Oncological surgical treatment; ARM: Anorectal malformation; GIT: Gastrointestinal treatment; VUR: Vesicoureteral reflux; UTI: Urinary tract infection.

obviously influence the final urological outcome. In patients treated for sacrococcygeal teratomas long-term sequelae, including neuropathic bladder or bowel abnormalities, have been observed in 11%–41% of survivors [10–13].

Our aim was to evaluate the urological outcome in a series of CS and try to elucidate if bladder function disorders could be owing to a congenital malformation or be the sequelae of surgical treatment.

#### 1. Materials and methods

We studied retrospectively 20 CS patients (13 girls and 7 boys) evaluated in a single center from 1991 to 2010 (Table 1).

Inclusion criterion for diagnosis of CS was the presence of hemisacrum. Every case underwent history and physical evaluation, renal function assessment, urinalysis, ultrasound examination, sacrum radiograph, genetic molecular analysis of the MNX1 gene, cystogram, magnetic resonance and urodynamic studies.

Sacrum radiograph was performed in 2 projections (anteroposterior and lateral). MRI was always performed in patients with diagnosis of hemisacrum.

Urodynamics was performed in children more than 2 years old with suspect of neuropathic bladder owing to their voiding habits (dropping, using diapers, not toilet trained) or some radiological signs (bladder profile at cystogram or ultrasound) after the last surgical treatment. In toilet trained children without any voiding trouble urodynamics and in infants, urodynamics was not performed in order to avoid any undue invasiveness. Urodynamics study included cystometrography and uroflowmetry, electromyography (EMG) was not performed.

The decision to perform detethering surgery was ultimately made by the neurosurgeon and based on MRI findings, somatosensory evoked potential and symptoms. Cases of tethered cord were identified by magnetic resonance imaging, which revealed the conus medullaris below the L2 vertebra. Presacral masses and anorectal malformations, when present, were treated by posterior sagittal anorectoplasty (PSARP) as described by Peña in 1982 [14] (Fig. 1). To reduce the risk of recurrence of presacral masses, excision of the coccyx was always performed.

The surgical timing was decided by the two surgical teams. In case of neurosurgical treatment, this was the first to be performed, followed by PSARP in case of presence of ARM and, finally, excision of presacral mass.

All the patients have been operated by the same two surgical teams: spinal cord surgery was performed by neurosurgical team, anorectal and presacral mass surgery by the general surgeon team.

After surgery, patients were followed by a multidisciplinary team including neurosurgeons, pediatric surgeons and urologists at regular intervals (at least 3, 6, and 12 months after each surgery and then once per year, more often in case of symptoms).

To evaluate postsurgical urinary outcomes, we considered: renal function, presence of urinary infections, vesicoureteral reflux, ultrasound pattern, voiding pattern. All patients were evaluated clinically, by ultrasound, renal function using Schwartz creatinine clearance formula [15] and urinalysis, in case of anomalies cystogram, nuclear scan and/or urodynamic testing were performed.

Regarding voiding pattern, each patient was categorized as continent, intermittently incontinent, or continuously incontinent, according to the Report from the Standardisation Committee of the International Children's Continence Society [16]. Bladder was defined neuropathic if the patient had clinical or urodynamic signs of voiding disorder or trouble of urinary continence.

Fisher exact test was used for statistical analysis to evaluate the correlation between neuropathic bladder and the associated spinal abnormalities, age at presentation, age at surgery, type of mass resected, type of ARM, type of neural tube defect and number of surgical treatment. A p < 0.05 was considered statistically significant.

### Download English Version:

# https://daneshyari.com/en/article/4155358

Download Persian Version:

https://daneshyari.com/article/4155358

<u>Daneshyari.com</u>