FISEVIER

Contents lists available at ScienceDirect

Journal of Pediatric Surgery

journal homepage: www.elsevier.com/locate/jpedsurg

High incidence of catheter-associated venous thromboembolic events in patients with long gap esophageal atresia treated with the Foker process

Sigrid Bairdain ^{a,*,1}, Daniel P. Kelly ^{b,1}, Corinne Tan ^a, Brenda Dodson ^c, David Zurakowksi ^{a,d}, Russell W. Jennings ^a, Cameron C. Trenor III ^e

- ^a Department of Pediatric Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- b Department of Anesthesia, Perioperative and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- ^c Department of Pharmacy, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- ^d Department of Anesthesia, Boston Children's Hospital, Harvard Medical School, Boston MA, USA
- e Department of Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA

ARTICLE INFO

Article history: Received 26 January 2013 Accepted 2 September 2013

Key words: Venous thromboembolic events (VTE) Paralysis Long gap esophageal atresia (LGEA)

ABSTRACT

Purpose: To determine the incidence of catheter-associated venous thromboembolic events (VTE) in long gap esophageal atresia (LGEA) patients treated at Boston Children's Hospital (BCH) and to identify possible risk factors associated with their development.

Methods: We performed a retrospective analysis of LGEA patients from 2005 to 2012. Symptomatic VTEs with radiographic confirmation were defined as events. Potential risk factors were assessed by univariate analysis and multivariate logistic regression. Covariates included age, weight, initial gap length, cumulative days of pharmacologic paralysis and paralytic episodes, number and type of central venous catheters (CVCs), and number of operations.

Results: Forty-four LGEA patients were identified. The incidence of CVC associated VTE was 34%. Univariate analysis identified age at Foker 1 (P=.03), paralysis duration (P=.01), episodes of paralysis (P=.001), cumulative number of CVC (P=.007) and length of stay (P=.03) as significant. Multivariate logistic regression identified the number of paralytic episodes as the only significant independent risk factor for VTE (P<.0001).

Conclusions: The incidence of symptomatic VTE was 34%, significantly higher than the VTE incidence of 4.5% reported for our other hospitalized children. These data have led to multidisciplinary discussions regarding thromboprophylaxis and development of a consensus-driven protocol. Since the initiation of this protocol, no VTEs have been identified.

 $\ensuremath{\mathbb{C}}$ 2014 Elsevier Inc. All rights reserved.

The incidence of symptomatic pediatric venous thromboembolic events (VTE) is increasing within pediatric tertiary care facilities. Analysis of VTE rates among hospitalized children reveals a 70% increase in annual rate of VTE from 34 to 58 cases per 10,000 hospital admissions over a 7-year period [1]. It is postulated that the dramatic increase in pediatric VTE at tertiary care centers may be caused by increased exposure to prothrombotic risk factors as a direct consequence of more intensive medical therapy that disrupts vascular and hemostatic health [2]. Of children with VTE, 80% to 90% have one or more underlying risk factor such as malignancy, congenital heart disease or presence of central venous catheters (CVCs) [1,2]. For

example, CVCs are a widely accepted risk factor for VTE with the rate of catheter-associated VTE at our institution reported at 4.5% [3].

Treatment of esophageal atresia (EA), a rare congenital anomaly, frequently requires utilization of interventions that may expose patients to prothrombotic risks. [4,5] As early as the 1950s, Dr. Robert Gross proposed a classification scheme based on anatomical variants of esophageal atresia with and without a tracheoesophageal fistula [6]. A subgroup of patients with EA have long gap esophageal atresia (LGEA), which is often defined by a distance between the upper and a lower atretic esophageal segment of greater than three vertebral bodies [7]. This distance ultimately delineates the timing and ease of repair. Foker et al. described the utilization of external traction sutures to promote in vivo growth through tension-induced natural lengthening, and subsequent delayed primary repair, potentially avoiding the need for interpositions [7]. During the Foker process, necessary adjunct therapies may include mechanical ventilation, pharmacological paralysis, sedation and analgesia, and utilization of CVCs to facilitate medication and parenteral nutrition (PN) administration.

 $^{^{\}dot{\gamma}}$ Funding: All authors have no conflicts of interest. Dr. Cameron C. Trenor III is funded through NHLBI/NIH K08 Award HL089509.

^{*} Corresponding author. Pediatric Surgical Critical Care and Research Fellow. Boston Children's Hospital, Harvard Medical School Common Pediatric Surgery Department, Fegan 3rd Floor, Boston MA 02115, USA.

E-mail address: sigrid.bairdain@childrens.harvard.edu (S. Bairdain).

¹ These authors contributed equally to this manuscript.

As a referral center for LGEA, Boston Children's Hospital (BCH) provides a unique environment to evaluate the potential effects of exposure to prothrombotic interventions and the development of VTE. We aim to define the incidence of CVC-associated VTE and effects of patient and treatment characteristics on VTE risk in this select, surgical pediatric population.

1. Methods

Following the approval of our institutional review board (IRB no. P00005612), we retrospectively reviewed the medical records of all patients managed utilizing the Foker tension-induced natural growth procedure for LGEA from January 1, 2005 to June 30, 2012 at our institution. Esophageal atresia (EA) patients with or without tracheoesophageal fistula (TEF) were considered to have LGEA when primary anastomosis was not possible because of length of the gap between the upper and lower esophageal segments [8]. All other forms of EA were excluded.

VTEs were defined as incident events when a venous thrombotic event occurred and was clinically symptomatic. Symptomatic VTEs were further defined as events which included unilateral swelling and color changes of the affected limb, as well as those which raised clinical concern by healthcare providers prompting diagnostic imaging. Routine screening imaging for identification of nonsymptomatic VTE was not conducted. LGEA patients who developed a symptomatic VTE were compared to those LGEA patients who did not develop a VTE. Arterial thrombotic events were excluded and only occurred in one patient following a radial arterial line placement (e.g. radial artery thrombosis).

A retrospective review of medical records evaluated the following preadmission variables: estimated gestational age, initial gap length, age, gender, history of congenital heart disease, prior thrombosis, congenital thrombophilia and family history of thrombosis. Details of each patient's treatment course included weight at time of Foker I process; number of surgeries; and, stage of Foker process when VTEs were diagnosed. Review of medical records also gathered details of ICU therapy including total number and location of indwelling CVCs, number of cumulative days of paralysis, number of episodes of paralysis, total length of stay (LOS) within the ICU, and diagnostic method of VTE (ultrasound, venogram) detection. Surgical and medical therapies, as well as overall thrombotic-related morbidities and thrombotic-related mortalities within the study time period were also documented.

variables were then evaluated by multivariate Cox logistic regression. Independent risk factors for the development of VTEs were identified by multivariate Cox logistic regression. Statistical analysis was performed using SPSS (version 19.0, SPSS Inc./IBM, Chicago, IL). Two-tailed values of P < .05 were considered statistically significant.

Variables were evaluated as potential risk factors for development of VTEs by univariate analysis. Those statistically significant univariate

2. Results

A retrospective review of medical records identified a total of 44 patients who met the above stated diagnostic criteria for LGEA. The incidence of symptomatic catheter-associated VTE was 34% in this population (n=15/44). Baseline characteristics, surgical and critical care variables are displayed in Table 1. All symptomatic VTEs were detected by health care professionals, with the most common finding being unilateral extremity swelling. Clinically detected VTEs were confirmed with an ultrasonography (n=10), venogram (n=2), or a diagnostic catheterization (n=1). With the exception of two VTEs, all others were associated with the venous catheter. One patient developed a subsequent pulmonary embolism (PE), while the other patient developed superior cava syndrome (SVC) secondary to thrombosis extension.

LGEA patients who developed a symptomatic, catheter-related VTE were compared to LGEA patients who did not develop a symptomatic, catheter-related VTE. Median hospital length of stay at time of VTE diagnosis was 29.5 days (range 3–69 days). Median number of central venous catheters (CVCs) or peripheral inserted central catheters (PICCs) placed was 4 catheters per patient (range 1–9 catheters) in those with symptomatic VTE versus 2 catheters (range 1–7 catheters) in those patients without VTE during duration of overall treatment. Seventy-three percent (n=11/15) of subjects diagnosed with a symptomatic VTE had exposure to both a CVC and PICC during hospitalization. Among subjects who had exposure to only one type of venous catheter during the hospitalization, 22% (n=4/18) of subjects with a PICC developed VTEs while no subjects with a CVC alone (n=0/4) developed VTEs.

The median number of operative procedures prior to VTE detection was 11 (range 3–25) in patients with symptomatic VTE versus 8 (range 2–28) in those who did not develop VTE. The median number of days of pharmacologic paralysis prior to diagnosis of VTE was 15 days (range 1–35). All catheter-related VTEs were diagnosed during the Foker stage I. The median ICU length of stay was 19 weeks

Table 1Baseline analysis of factors associated with VTE in patients with LGEA.

Variable	VTE detected ($n = 15$)	No VTE detected ($n = 29$)	P value
Gender			1.00
Female	8 (53%)	15 (52%)	
Male	7 (47%)	14 (48%)	
Congenital heart disease	4 (27%)	17 (47%)	.21
Family history of thrombosis	2 (13%)	3 (10%)	1.00
Age at Foker 1 (months)	7 (1–22)	4 (1-48)	.03*
Weight at Foker 1 (kg)	7 (3–11.2)	4.7 (3.2–13.0)	.29
Initial gap length (cm)	5 (1.6–9)	4.5 (1.4–7.3)	.56
Median number of total paralysis days	41 (8–133)	21 (2-73)	.01*
Number of episodes of paralysis	4 (1–13)	1 (1–5)	<.001*
More than 2 episodes of paralysis	10 (67%)	4 (14%)	<.001*
Median number of lines	4 (1–9)	2 (1–7)	.007*
Type of line utilized during Foker 1			.06
PICC	4 (27%)	14 (48%)	
CVC	0 (0%)	4 (14%)	
Both	11 (73%)	11 (38%)	
Median number of Operations	8 (3–25)	9 (2–28)	.21
Length of stay in the ICU (weeks)	19 (8–51)	13 (4–34)	.03*

cm, centimeters; kg, kilograms; CVC, central venous catheters; PICC, peripheral inserted central catheter; ICU, intensive care unit.

^{*} Statistically significant univariate predictor of VTE.

Download English Version:

https://daneshyari.com/en/article/4155428

Download Persian Version:

https://daneshyari.com/article/4155428

<u>Daneshyari.com</u>