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a b s t r a c t

The least squares estimator of a discrete distribution under the constraint of convexity is
introduced. Its existence and uniqueness are shown and consistency and rate of conver-
gence are established. Moreover it is shown that it always outperforms the classical empir-
ical estimator in terms of the Euclidean distance. Results are given both in thewell- and the
mis-specified cases. The performance of the estimator is checked throughout a simulation
study. An algorithm, based on the support reduction algorithm, is provided. Application to
the estimation of species abundance distribution is discussed.
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1. Introduction

Recently, the problemof estimating a discrete probabilitymass function under a shape constraint has attracted attention:
Jankowski and Wellner (2009) considered the non-parametric estimation of a monotone distribution and Balabdaoui et al.
(in press) considered the case of a log-concave distribution. Although the discrete case is in some ways very different from
the continuous case (for example, the convergence rates are typically different in the two cases), the construction of shape-
constrained estimators in the discrete case is largely inspired by the construction of shape-constrained estimators of a
probability density function. The non-parametric estimation, based on i.i.d. observations, of the distribution of a continuous
random variable under a shape constraint has received a great deal of attention in the past decades; see Balabdaoui and
Wellner (2007) for a review. The most studied constraint is the monotonicity of the density function. It is well-known that
the non-parametric maximum likelihood estimator of a decreasing density function over [0, ∞) is the Grenander estimator
defined as the left-continuous slope of the least concavemajorant of the empirical distribution function of the observations.
This estimator can be easily implemented using the PAVA (pool adjacent violators algorithm) or a similar device; see Barlow
et al. (1972). The non-parametric maximum likelihood of a log-concave density function (i.e., a density function f such
that log(f ) is a concave function) was introduced by Walther (2002) and algorithmic aspects were treated by Dümbgen
et al. (2007); see also the R package in Dümbgen and Rufibach (2011). Another well studied constraint is the convexity (or
concavity) of the density function over a given interval. It was shown byGroeneboom et al. (2001) that both the least squares
estimator and the non-parametric maximum likelihood estimator under the convexity constraint exist and are unique.
However, although a precise characterization of these estimators is given in that paper, their practical implementation
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is a non-trivial issue: it requires sophisticated iterative algorithms that use a mixture representation, such as the support
reduction algorithm described by Groeneboom et al. (2008).

In this paper, we consider the non-parametric estimation of a discrete distribution on N under the convexity constraint
(note that a convex distribution on N is necessarily non-increasing, so in our setting, convex is equivalent to non-increasing
convex). This problem has not yet been considered in the literature, although it has several applications, such as the
estimation of species abundance distribution in ecology (Lanumteang and Böhning, 2011). In this field, the term ‘‘non-
parametricmethods’’ often refers to finitemixtures of parametric distributionswhere only themixingdistribution is inferred
in a non-parametric way, see e.g. Böhning and Kuhnert (2006), Böhning et al. (2005), Chao and Shen (2004).

We study the least squares estimator of a discrete distribution on N under the convexity constraint. First, we prove that
the constrained least squares estimator exists and is unique, andwe consider computational issues. Similar to the continuous
case, we prove that a representation of convex discrete distributions can be given in terms of a – possibly infinite – mixture
of triangular functions on N, and, based on this characterization, we derive an algorithm that provides the least squares
estimate, although both the number of components in the mixture and the support of the estimator are unknown. This
algorithm is an adaptation to our problem of the support reduction algorithm in Groeneboom et al. (2008). Then, we address
theoretical performance of the estimator: we prove that it always outperforms the classical empirical estimator in terms of
the ℓ2-error and that it is consistent with

√
n-rate of convergence (where as usual, n denotes the sample size), and we also

consider the case of a misspecified model. All these results are new. Finally, we assess the performance of the least squares
estimator under the convexity constraint through a simulation study. Starting from the mixture representation, we finally
give a definition of a convex abundance distribution and illustrate how it applies to datasets analyzed in the literature.

The paper is organized as follows. The characterization of the constrained least squares estimator is given in Sections 2
and 2.3 is devoted to computational issues. In Section 3 the theoretical properties of the estimator are established and
a simulation study allowing the assessment of the performance is reported in Section 4. The application to abundance
distribution is introduced in Section 5. Finally the proofs are postponed to Section 6.
Notation. Below is a list of notation and definitions that will be used throughout the paper.

The same notation is used to denote a discrete function f : N → R and the corresponding sequence of real numbers
(f (j))j∈N. The ℓr -norm of a real sequence f is

∥f ∥r =


j>0

|f (j)|r
1/r

for all r ∈ N \ {0} and

∥f ∥r = sup
j>0

|f (j)|

for r = ∞. For all r, ℓr(N) is the set of real sequences with a finite ℓr -norm.
For all functions f : N → R and all positive integers j, denote by

1f (j) = f (j + 1) − 2f (j) + f (j − 1)

the discrete Laplacian. Let C be the set of convex discrete functions f ∈ ℓ2(N), that is, the set of all f ∈ ℓ2(N) having
1f (j) > 0 for all integers j > 1, and let C1 be the set of all convex probability mass functions on N, that is the set of functions
f ∈ C satisfying


i>0 f (i) = 1. An integer j > 1 is a knot of f ∈ C if 1f (j) > 0.

It should be noticed that any f ∈ C has limj→∞ f (j) = 0, so by convexity, any f ∈ C is non-negative, non-increasing and
strictly decreasing on its support. For example, any mixture of triangular distributions is convex, the geometric distribution
and the Poisson distribution with parameter smaller than 2 −

√
2 are convex (see e.g. Murota, 2009 for more on convex

discrete functions).
We say that a function f : N → R is linear over a set of consecutive integers {k, . . . , l}, where l > k + 1, if 1f (j) = 0 for

all j ∈ {k + 1, . . . , l − 1}.

2. The constrained LSE of a convex discrete distribution

Suppose that we observe n i.i.d. random variables X1, . . . , Xn that take values inN, and that the common probabilitymass
function p0 of these variables is convex on N with an unknown support. We aim to build an estimator of p0 that satisfies
the convexity constraint. For this task, we consider the constrained least-squares estimator (LSE)pn of p0, defined as the
minimizer of ∥f −pn∥2 over f ∈ C, wherepn is the empirical estimator:

pn(j) =
1
n

n
i=1

I(Xi=j) (1)

for all j ∈ N. Recall that from theHilbert projection theorem, it follows that theminimizer is uniquely defined, see Section 2.1
below. Moreover, we will prove thatpn is a probability mass function on N.
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