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Abstract

Rpackage flexmix provides flexible modelling of finite mixtures of regression models using the EM algorithm. Several new features
of the software such as fixed and nested varying effects for mixtures of generalized linear models and multinomial regression for a
priori probabilities given concomitant variables are introduced. The use of the software in addition to model selection is demonstrated
on a logistic regression example.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Finite mixtures of regression models are a popular method to model unobserved heterogeneity or to account for
overdispersion in data. They are flexible models and in theory it is easy to modify and extend them by using more
complex models for the component distribution functions and estimate the corresponding parameters, e.g., using the
EM algorithm.

R (R Development Core Team, 2006) features several extension packages for estimation of mixture regression models,
e.g., fpc for mixtures of linear regression models (Hennig, 2000) and mmlcr for mixed-mode latent class regression
(Buyske, 2006). However, like virtually all other (non-R) implementations, they consider only a few particular types
of mixture models and do not reflect the generality of the theoretical model class in the software design. R package
flexmix (Leisch, 2004) tries to fill this gap by encapsulating the abstract statistical objects of interest into S4 classes
and methods such that the resulting software can be easily extended.

This paper is organized as follows: Section 2 gives notation and the model class, the main new functions of
flexmix are presented in Section 3, and we end with a short demonstration in Section 4. The latest development
version of the package sources and all R code necessary to reproduce the results in this article are available from
http://www.ci.tuwien.ac.at/research/mixtures.
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2. Model specification

We consider finite mixtures of regression models of form

H(y|x, w, �) =
K∑

k=1

�k(w, �)F
(
y|x, �k, �k

)
,

where � denotes the vector of all parameters, y the dependent, x the independent, w the concomitant variable, and
F is the component specific distribution function. For component-wise generalized linear models (GLMs), F must
be a member of the exponential family (McCullagh and Nelder, 1989). The component specific parameters are the
regression coefficients �k and dispersion parameters �k . The component weights �k need to satisfy

K∑

k=1

�k(w, �) = 1 and �k(w, �) > 0 ∀k, w, �, (1)

where � are the parameters of the concomitant variable model.
Different concomitant variable models are possible to determine the component weights (Dayton and Macready,

1988), as the mapping function only has to fulfill condition (1). In the following a multinomial logit model for the �k

is assumed with the first component as baseline.
This class of finite mixtures of GLMs with concomitant variable models is given in McLachlan and Peel (2000,

p. 145). Special cases are for example random intercept models (see Follmann and Lambert, 1989; Aitkin, 1999) where
the coefficients of all independent variables are assumed to be equal over the mixture components.

Our software implementation allows to specify such equality constraints for parameters over mixture components:(
�′

k, �k

)
may be restricted to be equal over all components, to vary between groups of components, or to be different

for all components. Variation between groups is referred to as varying effects with one level of nesting. In addition,
each (group of) components may use different sets of covariates. Due to space restrictions we cannot give full de-
tails of parameter estimation, but extension from standard linear models (Grün and Leisch, 2006) to GLMs is rather
straightforward.

3. Design principles

Functions and model formulae are first class objects in the S language, which allows in combination with the lexical
scoping rules of R (Gentleman and Ihaka, 2000) for very modular software design. Rather than using text mode
arguments used as switches within function bodies, flexmix uses driver functions to specify all aspects of the mixture
model. Users can either use the growing collection of drivers distributed as part of flexmix or write and use their own
drivers.

In a first step the (unfitted) component specific model F
(
y|x, �k, �k

)
and the concomitant variable model �(w, �)

have to be specified. For this no data are needed, only the names of the independent and dependent variables and their
respective interaction structure are defined.
FLXglm() only allows varying effects for the coefficients and the dispersion parameters. In this case the likelihood

can be maximized separately for each component in the M-step of the EM algorithm. If there are also fixed and nested
varying effects for the regression coefficients and dispersion parameters, our new driver FLXglmFix() has to be used
and the likelihood is maximized simultaneously for all components. The design matrix is constructed by replicating
the observations K times with suitable columns of zeros added. Model formulae for the varying, nested varying and
fixed effects have to be provided. These are evaluated by successively updating the formula of the random effects with
the formula for the fixed and then the nested varying effects.

The concomitant variable model is specified in a similar fashion. The default dummy driver FLXconstant()
uses no concomitant variables and acts only as a placeholder. For multinomial logistic regression our new function
FLXmultinom() can be used (see example section). The main estimation engine of flexmix has changed to be able
to use the new functionality, however these are changes behind the scenes in unexported functions, all existing user
code should run unaffected.
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