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a b s t r a c t

Dimension reduction and variable selection play important roles in high dimensional data
analysis. The sparse MAVE, a model-free variable selectionmethod, is a nice combination of
shrinkage estimation, Lasso, and an effective dimension reductionmethod,MAVE (minimum
average variance estimation). However, it is not robust to outliers in the dependent variable
because of the use of least-squares criterion. A robust variable selection method based on
sparse MAVE is developed, together with an efficient estimation algorithm to enhance its
practical applicability. In addition, a robust cross-validation is also proposed to select the
structural dimension. The effectiveness of the new approach is verified through simulation
studies and a real data analysis.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The explosion ofmassive data in the last decades has generated considerable challenges and interests in the development
of statistical modeling. Practically, only part of these observed variables are believed to be truly relevant to the response.
Thus, variable selection plays an important role in analyzing these high dimensional data, not only for better model
interpretation but also for higher prediction accuracy (Fan and Li, 2006). A lot of research efforts have been devoted to this
area. Many traditional model-based variable selection criteria have been advocated and strengthened in the literature, such
as Cp, AIC, BIC, etc. Recently a family of regularization approaches, including Nonnegative Garrote (Breiman, 1995), Lasso
(Tibshirani, 1996), SCAD (Fan and Li, 2001), Lars (Efron et al., 2004) and Elastic Net (Zou and Hastie, 2005), was proposed
to automatically select informative variables through continuous shrinkage. However, because of the so-called ‘curse of
dimensionality’ (Bellman, 1961), it is very difficult or even infeasible to formulate and validate a parametric model with a
large number of covariates. So it is desirable to have a set of model-free variable selection approaches.

Sufficient dimension reduction (Li, 1991; Cook, 1998) provides such a model-free alternative to variable selection. The
basic idea of sufficient dimension reduction is to replace the original high dimensional predictor vector with its appropriate
low dimensional projection, while preserving full regression information. Each direction in the low dimensional subspace is
a linear combination of original predictors. Cook (2004) and Li et al. (2005) proposed several testing procedures to evaluate
the contribution of each covariate. Similar to the model-based subset selection procedures, these methods are not stable
because of their inherent discreteness (Breiman, 1996). Ni et al. (2005), Li and Nachtsheim (2006), Li (2007), Zhou and He
(2008) and (Bondell and Li, 2009) used regularization paradigm to incorporate shrinkage estimation into inverse regression
dimension reduction methods. Along the same line, Wang and Yin (2008) combined shrinkage estimation and a forward
regression dimension reduction method, MAVE (minimum average variance estimation, Xia et al., 2002), and proposed
sparse MAVE to select informative covariates. Compared to the previous work, sparse MAVE is model-free and requires
no strong probabilistic assumptions on the predictors. However, MAVE and sparse MAVE are not robust to outliers in the
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dependent variable because of the use of least-squares criterion. Čížek and Härdle (2006) gave a comprehensive study of
the sensitivity of MAVE to outliers and proposed a robust enhancement to MAVE by replacing the local least squares with
local L- or M- estimation.

In this article,we extend the robust estimation to variable selection andpropose a robust sparseMAVE. It can exhaustively
estimate directions in the regression mean function and select informative covariates simultaneously, while being robust
to the existence of possible outliers in the dependent variable. In addition, a robust cross-validation is also proposed to
select the structural dimension. The effectiveness of the new approach is verified through simulation studies and a real data
analysis.

The rest of the article is organized as follows. In Section 2, we briefly review the methods MAVE and sparse MAVE. The
robust extension of sparseMAVE is detailed in Section 3. Simulation studies and comparisonwith some existingmethods are
presented in Section 4. In Section 5, we apply the proposed robust sparseMAVE to a logo design data collected by Henderson
and Cote (1998). Finally, in Section 6, we conclude the article with a short discussion.

2. A brief review of MAVE and sparse MAVE

The regression-type model of a response y ∈ R1 on a vector x ∈ Rp can be written as

y = g(BTx)+ ε, (1)

where g(·) is an unknown smooth link function, B = (β1, . . . ,βd) is a p × d orthogonal matrix (BTB = Id) with d < p and
E(ε | x) = 0 almost surely. Xia et al. (2002) defined the d-dimensional subspaceBTx the effective dimension reduction (EDR)
space, which captures all the information of E(y|x). The d is usually called the structural dimension of the EDR space. Given
a random sample {(xi, yi), i = 1, . . . , n}, the MAVE estimates the EDR directions by solving the following minimization
problem

min
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where BTB = Id and the weight wij is a function of the distance between xi and xj. The minimization of (2) can be solved
iteratively with respect to {(aj, bj), j = 1, . . . , n} and B separately. The estimation of MAVE is very efficient since only
two quadratic programming problems are involved and both have explicit solutions. To improve the estimation accuracy,
a lower dimensional kernel weight w̃ij as a function of B̃T (xi − xj) can be used after an initial estimate B̃ was obtained
(the refined MAVE).

Note that, each reduced variable inBTx is a linear combination of all original predictors. But it is not uncommon in practice
that some covariates are irrelevant among a large number of candidates. To effectively select those informative variables
can improve both the model interpretability and the prediction accuracy, Wang and Yin (2008) proposed sparse MAVE to
incorporate an L1 penalty into the above estimation. The constrained optimization is as follows,

min
B,aj,bj,j=1,...,n


n

j=1

n
i=1


yi −


aj + bT

j B
T (xi − xj)

2
wij +

d
k=1

λk|βk|1


, (3)

where |·|1 represents the L1 norm and {λk, k = 1, . . . , d} are nonnegative regularization parameters which control the
amount of shrinkage. Through penalizing on the L1 norm of the parameter estimates, we can achieve the goal of variable
selection when the true direction has a sparse representation. The minimization of (3) can be solved by a standard Lasso
algorithm. More details can be found in Wang and Yin (2008).

3. Robust sparse MAVE

3.1. Robust estimation

Note that, in (2) and (3), the least-squares criterion is used between the response and the regression function to evaluate
how well the model fits. It corresponds to themaximum likelihood estimation (MLE) when the error is normally distributed.
However, it is not robust to outliers in the dependent variable y and to the violation of distribution assumptions on ε, such
as heavy-tailed errors. To achieve the robustness in estimation, Čížek and Härdle (2006) proposed to replace the local least
squares with local L- or M- estimation. The robust MAVE estimates the EDR directions by minimizing
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where ρ(·) is a robust loss function. Note that, the traditional least squares criterion corresponds to ρ(t) = t2, and the
median regression uses L1 loss where ρ(t) = |t|1. Its derivative ψ(·) = ρ ′(·) is proportional to the influence function.
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