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a b s t r a c t

Sparse logistic principal component analysis was proposed in Lee et al. (2010) for
exploratory analysis of binary data. Relying on the joint estimation of multiple principal
components, the algorithm therein is computationally too demanding to be useful
when the data dimension is high. We develop a computationally fast algorithm using
a combination of coordinate descent and majorization–minimization (MM) auxiliary
optimization. Our new algorithm decouples the joint estimation of multiple components
into separate estimations and consists of closed-form elementwise updating formulas for
each sparse principal component. The performance of the proposed algorithm is tested
using simulation and high-dimensional real-world datasets.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Principal component analysis (PCA) is a dimension reduction method that is widely used in data analysis. The direct
application of PCA to a binary dataset is not sensible because the standard PCA exploits the Euclidean distance which is not
compatible with binary variables. The logistic PCA model, as an extension of PCA to multivariate binary variables, has been
studied in recent literature and several algorithms to fit the model have been proposed (Collins et al., 2002; Schein et al.,
2003; de Leeuw, 2006; Lee et al., 2010). As in the sparse PCA for continuous variables (Zou et al., 2006; Shen and Huang,
2008), the sparsity-inducing penalization on the principal component loadings improves stability and interpretability in the
logistic PCA, especially in high-dimensional and low-sample-size settings. Lee et al. (2010) proposed sparse logistic PCA for
binary data and illustrated its application using simulated and real-world data. Themethod in Lee et al. (2010) is particularly
applicable for the multivariate binary datasets where the number of variables exceeds the number of samples. These kind
of datasets are frequently encountered in many research areas such as bioinformatics.

Lee et al. (2010) proposed an iterative algorithm to estimate principal component scores and principal component
loadings for sparse logistic PCA. Since the algorithm involves matrix inversion in each iteration, it can be computationally
inefficient when dealingwith high-dimensional data. Moreover, because tuningmultiple penalty parameters requires a grid
search inmulti-dimension and it is often computationally infeasible, they considered a single commonpenalty parameter for
all components to reduce the computational burden. However, using single penalty parameter may not be flexible enough
when the number of zeros in different principal component loading vectors are significantly different.

To overcome the computational challenges caused by the high dimensionality and multiple penalty parameter tuning,
we propose a computationally fast new algorithm that improves the existing algorithm in many ways. The new algorithm
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combines two ideas: the auxiliary optimization usingmajorization–minimization (Lange et al., 2000) and coordinate descent
(Tseng, 1988, 2001). The combination of the two ideas enables us to derive updating formulas in the iterations that just
consist of simple vector inner products and thresholding rules. By fitting the principal components one by one, we are also
able to reduce the multi-dimensional search of penalty parameters to several one-dimensional searches. Our numerical
studies using simulated and real-world data have demonstrated that the new algorithm is faster than our old algorithm.

The rest of the paper is organized as follows. Section 2 reviews the formulation of sparse logistic PCA and the existing algo-
rithm. Section 3 develops our new algorithm. Section 4 discusses modification of the new algorithm to incorporate different
penalty functions. Sections 5 and 6 uses simulated and real data to demonstrate the performance of the new algorithm.

2. Review of sparse logistic PCA

We first describe the probabilistic model for the logistic PCA. Suppose we have an n × p binary data matrix Y = (yij)
each row of which represents a vector of observations from binary variables. We assume that entries of Y are realizations
of mutually independent random variables and that yij follows the Bernoulli distribution with success probability πij. The
canonical parameter, θij = log


πij/(1 − πij)


, is the logit transformation of πij. Define the inverse logit transformation

π(θ) = {1+ exp(−θ)}−1. Then the success probabilities can be represented using the canonical parameters as πij = π(θij).
The individual data generating probability becomes Pr(Yij = yij) = π(θij)

yij{1− π(θij)}
1−yij = π(qijθij) with qij = 2yij − 1.

This representation leads to the compact form of the log likelihood as

ℓ =

n
i=1

p
j=1

logπ(qijθij). (1)

In the logistic PCA, the p-dimensional canonical parameter vectors θi = (θi1, . . . , θip)
T are constrained to reside in a low

dimensional manifold of Rp with the dimensionality k for some integer k ≤ p. Precisely, the canonical parameters satisfy
θi = µ + ai1b̃1 + · · · + aikb̃k for i = 1, . . . , n. We call vectors of length p, b̃1, . . . , b̃k, the principal component loading
vectors and the coefficients ai = (ai1, . . . , aik)T the principal component scores for the ith observation. In matrix form, the
canonical parameter matrix 2 = (θij) = (θ1, . . . , θn)

T is represented as

2 = 1nµ
T
+ ABT , (2)

whereA = (a1, . . . , an)T is the n×kprincipal component scorematrix andB = (b̃1, . . . , b̃k) is the p×kprincipal component
loading matrix. Let bj denote the jth row of B and µj denote the jth element of µ. Then (2) implies that θij = µj + aTi bj. The
log likelihood can be written as

ℓ(µ,A, B) =

n
i=1

p
j=1

logπ{qij(µj + aTi bj)}. (3)

The logistic PCA is performed by maximizing the log likelihood over the parameters µ,A, and B. This formulation of logistic
PCA can be viewed as an extension of the standard PCA for continuous variables. In particular, if the Bernoulli likelihood (3)
is replaced by a normal likelihood, one recovers the standard PCA (Lee et al., 2010).

Inspired by the lasso regression (Tibshirani, 1996), Lee et al. (2010) proposed to obtain a sparse principal component
loading matrix by minimizing the negative penalized log likelihood criterion

−ℓp(µ,A, B) = −

n
i=1

p
j=1

logπ{qij(µj + aTi bj)} +
1
4

k
m=1

λm∥b̃m∥1, (4)

where ∥b̃m∥1 =
p

j=1 |bjm| is the L1 norm of the mth principal component loading vector. The constant factor in front
of the penalties, 1/4, is intentionally introduced for obtaining cleaner formula in the computational algorithm. Note that
penalties are imposed on the columns of matrix B. The use of L1 penalization in PCA has two advantages: First, it provides
the regularization to ensure stable extraction of the principal components, especially in high-dimensional situations. Second,
the L1 penalty results in many zero elements in the principal component loading vectors and thus makes it easy to interpret
the results (Zou et al., 2006; Shen and Huang, 2008). These benefits of using the L1 penalization have been demonstrated
in simulation studies and data analysis in Lee et al. (2010). The algorithm developed in this paper can incorporate general
sparsity-inducing penalties other than the lasso penalty; see Section 4.

For stableminimization of the negative penalized log likelihood, Lee et al. (2010) proposed anMajorization–Minimization
(MM) algorithm (Lange et al., 2000), extending an earlier algorithm by de Leeuw (2006) that does not consider the penalty
term. In the framework of theMMalgorithm, theminimization of (4) is turned into theminimization of a quadratic auxiliary
function. To obtain a quadratic auxiliary function for the negative Bernoulli log likelihood, we use the relationship

− logπ(z) ≤ − logπ(zo)+ 2{1− π(zo)}2 +
1
8
[z − zo − 4{1− π(zo)}]2 (5)

for all z at any given zo. The quadratic upper bound on the right-hand side is tangent to − logπ(z) at zo. This enables us
to construct a quadratic upper bound for the negative penalized log likelihood with the previous parameter estimates as a
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