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a b s t r a c t

The intention is to provide a Bayesian formulation of regularized local linear regression,
combined with techniques for optimal bandwidth selection. This approach arises from the
idea that only those covariates that are found to be relevant for the regression function
should be considered by the kernel function used to define the neighborhood of the
point of interest. However, the regression function itself depends on the kernel function.
A maximum posterior joint estimation of the regression parameters is given. Also, an
alternative algorithm based on sampling techniques is developed for finding both the
regression parameter distribution and the predictive distribution.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider p independent covariates {X1, . . . , Xp} and a response variable Y . Let X and y = (y1, . . . , yN)t be, respectively,
anN×p datamatrix and a continuous-valued vector, so that each row xi is i.i.d. related to a continuous response yi bymeans
of some unknown (nonlinear) functionm(·):

yi = m(xi)+ ei,

wherem(·) is assumed to be sparse and have continuous second-order derivatives and ei is the irreducible error term, with
E[ei|xi] = 0. Therefore, E[yi|xi] = m(xi). We denote the elements and the columns of X , respectively, as xij and X·j.

The objective is to estimate the response at a point of interest x = (x1, . . . , xp)t using a sparsity assumption: only a subset
of the covariates is indeed relevant for the estimation.We denote as X∗ the datamatrix X centered at x and augmentedwith
a first column of ones, so that x∗

i0 = 1 for all i = 1, . . . ,N . In our approach, the homoscedasticity assumption is not strictly
necessary, so we can generically define the variance of ei as Var[ei|xi] = s2(xi) = σ 2

i . However, as will be apparent below,
we make the homoscedasticity assumption σ 2

i = σ 2,∀i, for computational reasons.
Multivariate local regression (Cleveland and Devlin, 1988; Loader, 1999) estimates a multivariate regression function

valid for some neighborhood of x. This function is often linear, corresponding to a first-order Taylor approximation of m(·)
at x, and it can be defined on the original covariates or on some set of basis functions defined on the original covariates. We
consider for simplicity the first case, although the generalization is straightforward. Local regression is appealing from both
theoretical and practical sides. On the one hand, it is known to enjoy 100%minimax efficiency for some choice of bandwidth
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and kernel (Fan, 1993; Ruppert and Wand, 1994). On the other hand, it is computationally fast, easy to implement, flexible,
and robust to data design (Hastie and Loader, 1993).

The neighborhood is defined by a kernel function, which assigns weights w = (w1, . . . , wN)
t to the data points in the

data set on the grounds of their distance to x. The kernel function has a bandwidth parameter, which strongly influences the
estimation. High bandwidths increase the bias and decrease the variance of the estimate; low bandwidths do the opposite.
The simplest approach is to use a single-value bandwidth for all regressors, and themost general setting is to use a full-matrix
bandwidth, which provides flexible smoothing on all orientations.While the first usually leads to a severely biased estimate,
the second can imply the estimation of a large number of parameters. A convenient compromise is a bandwidth vector or
diagonal bandwidth, denoted as h = (h1, . . . , hp)

t , which permits adaptive smoothing at each coordinate direction. The
kernel function is defined as

w2
i = Kh(xi − x) =

p
j=1

1
hj
K


xij − xj

hj


=

p
j=1

1
hj
K


x∗

ij

hj


, i = 1, . . . ,N, (1)

where K(·) is a univariate, symmetric, and non-negative function with a compact support, such that

K(t)dt = 1. In this

paper, we use the well-known Gaussian kernel K(t) = (2/π)1/2 exp(−t2/2).
Then, the estimated local linear regression function g(·) is defined by a vector of local regression coefficients β̂(x) =

(β̂1(x), . . . , β̂p(x))t and an intercept term β̂0(x). For simplicity of notation, in the followingwe denote, unless it is necessary
to do otherwise, β̂0(x) as β̂0 and β̂(x) as β̂. Then, we have

ŷi = g(xi) = β̂0 + xti β̂.

Since the data is centered at x, we have ŷ = g(x) = β̂0. In the following, we denote (β̂0, β̂) as β̂
∗

. We can linearly estimate
β̂

∗

as

β̂
∗

=

X∗

t
WX∗

−1X∗
t
Wy,

where W = diag(w2). We can interpret β̂ as an estimate of the gradient (∂m(x)/∂X1, . . . , ∂m(x)/∂Xp)
t . For estimates of

second derivatives, we would need at least a second-order fit.
Therefore, the cornerstone of (linear) local regression is the estimation of a suitable bandwidth. We focus on the

multivariate case, where a direct estimation is not straightforward. This estimation implies unknown functionals which
themselves depend on the bandwidth. Typically, the bandwidth is set by direct (plugin) computation (Wand and Jones,
1994; Yang and Tschernig, 1999), selected by cross-validation (Sain et al., 1994; Hall et al., 2007), or found within some
type of suboptimal search (Lafferty andWasserman, 2008). It is known that a suitable plugin estimate of h can improve the
cross-validated estimate. In this paper, we work on the basis of a plugin diagonal bandwidth estimate, which, as mentioned
above, is a reasonable tradeoff between a scalar bandwidth and a full-matrix bandwidth.

We state that the kernel estimate in the local regression framework should account for the importance of each variable. In
other words, if a variable is absolutely irrelevant for the regression function, or noisy, it should not participate in theweights
calculation (Vidaurre et al., 2012). Since the best rate of convergence in non-parametric regression is N−4/(4+p) (Györfi et al.,
2002), to exploit the sparse nature ofm(·) is extremely convenient.

The approach taken by Lafferty andWasserman (2008), so-called regularization of derivative expectation operator, or rodeo,
also uses a diagonal bandwidth, and is of special interest to us because they consider sparsity inm(x). Specifically, they use
the estimated gradient of the regression function with respect to the bandwidth, ∂m(x)/∂h, to conduct a greedy search,
considering that a high value of ∂m(x)/∂hj is indicative of the relevance of variable Xj. In other words, this gradient tells
how the regression function varies with infinitesimal changes of the bandwidth. If it varies little, then the variable is con-
sidered to be irrelevant and will be assigned a relatively large bandwidth. Favoring computational speed and applicability
in high-dimensional settings, this approach does not generalize for arbitrary nonlinearities. This method assumes a known
value of σ 2. If σ 2 is unknown, it has to be separately estimated.

In this paper, we take a adaptive regularizedmultivariate local regression approach by defining appropriate distributions
over the parameters, combining it with an efficient bandwidth estimationmethod.We call it sparse bandwidth selector (sbase
for short). The method includes the estimation of σ 2 and considers sparsity by analyzing the estimated bandwidths at each
step. Several elements of the method are analogous to other approaches (which do not consider sparsity explicitly), as for
example the work by Yang and Tschernig (1999). We expect that a suitable application of adaptive ridge regularization will
further improve the bias–variance tradeoff of the estimation. We also propose an estimation of the regression coefficients
though sampling methods, so that we obtain an estimate of the posterior distribution of the response.

The rest of the paper is organized as follows. Section 2 introduces the Bayesian hierarchicalmodel. Section 3 describes the
bandwidth selection procedure. Section 4 details how to obtain amaximum a posteriori (MAP) estimate of the response and
the parameters. Section 5 introduces how to obtain a posterior distribution of the regression parameters and the response.
Section 6 discusses the complexity of the algorithms. Section 7 provides some empirical examples of the performance of the
proposed methods. Finally, we draw some conclusions in Section 8.
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